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Abstract

Prostate cancer is a metabolically distinct malignancy as it exhibits strong flexibility in how it
uses energy and perform physiological processes. In contrast to many solid tumors which
mostly depend on aerobic glycolysis, the primary prostate cancer cells still depend mainly on
oxidative phosphorylation and tricarboxylic acid (TCA) cycle for energy supply. This unique
metabolic pattern is mainly controlled by androgen receptor signaling and also affected by
mitochondrial functions and zinc level inside the cells. When the disease goes into advanced
stage, especially castration-resistant prostate cancer (CRPC), the tumor cells change
their energy system toward glycolytic and lipogenic ways to support hyperactive cell cycle,
therapy resistance, and metastasis. This review gives a detailed discussion about metabolic
reprogramming in prostate cancer with focus on glycolysis, mitochondrial dysfunction, and
dysregulated lipid and cholesterol metabolism. Key enzymes, transporters and transcription
factors, such as GLUT1, HK2, PFK1, PKM2, LDHA, PDK, FABP5, ACLY, ACAC, FASN,
SREBPs and LXRs are discussed as important players of tumor bioenergetics , and as
possible drug targets. Especially lipid metabolism has shown strong relation with CRPC
aggressiveness, which is promoted by androgen receptor-controlled increase of lipogenic
enzymes and fatty acid transport process. Interaction between metabolic pathways and
oncogenic signaling like PI3K/AKT/mTOR makes the situation more complex. The review
also covers new therapeutic strategies which make use of these metabolic vulnerabilities,
including small molecule inhibitors, natural substances, and combination treatments. Better
understanding of metabolic reprogramming of prostate cancer at different disease stages
can help in creating more specific therapies to overcome resistance and improve clinical
outcomes.
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Introduction

Prostate cancer is one of the most frequent malignancies among
men and still remains a leading cause of cancer related death in
many countries. According to the recent global cancer report
covering 185 countries, around 1.5 million new cases and about
0.4 million deaths were recorded in 2022, which makes prostate
cancer the second most diagnosed and the eighth major cause
of death among men [1]. In the United States, it is reported as
the most common cancer and second cause of cancer death in
male population [2]. The disease shows high variation in clinical
behavior, where some tumors grow very slowly but others are
aggressive and life threatening. The reasons behind this disease
are heterogenous and include both modifiable and non-modifiable
risk factors such as age, family history, race, genetic background,
and lifestyle pattern [3]. Age is a strong factor because the chance
of developing prostate cancer increases from 0.005% in men
below 39 years to 13.7% in those between 60-79 years [3]. Early
identification through prostate-specific antigen (PSA) screening
and digital rectal examination has improved detection and disease
management [4]. Local disease is often managed by active
surveillance, surgery, or radiotherapy, but metastatic or advanced
disease needs systemic therapy, mostly androgen deprivation
therapy. Androgen deprivation therapy remains as the main
treatment for locally advanced and metastatic prostate cancer [5].
Although it gives good response in the beginning, most patients
later develop castration-resistant prostate cancer (CRPC) within
one or two years of therapy [6]. The arrival of second generation
androgen receptor pathway inhibitors such as enzalutamide
and CYP17Al inhibitor abiraterone, when used with androgen
deprivation therapy, has improved survival of many patients [7-9].
However, resistance to these treatments becomes common and is
usually due to activation of compensatory signaling and metabolic
systems. Therefore, there is urgent need to develop therapies that
can attack metabolic weaknesses in CRPC.

Metabolic reprogramming is now considered as a hallmark of
cancer and helps tumor cells to adjust under changing nutrients
and oxygen levels [10]. In prostate cancer, this metabolic change
involves glucose, lipid, and amino acid metabolism. While most
cancers rely mainly on aerobic glycolysis (Warburg effect), the
early stage prostate cancer keeps oxidative phosphorylation and
tricarboxylic acid (TCA) cycle as main energy sources, which is
strongly controlled by androgen receptor signaling [11]. When
disease advances to CRPC, metabolism shifts more toward
glycolysis and lipid biosynthesis, which support tumor survival,
growth, and therapy resistance [12]. Among these metabolic
processes, lipid metabolism plays a key role. The disturbed de
novo lipogenesis, fatty acid uptake, and B-oxidation give cells
both structural and signaling components that drive tumor
progression [13, 14]. androgen receptor signaling also controls
enzymes responsible for steroidogenesis and fatty acid oxidation,
thus helping cancer cell survival even in low androgen condition
[15]. High lipid accumulation, especially of glycerophospholipids,
is linked with therapy resistant CRPC [16]. This combined
dependency on oxidative phosphorylation and lipid metabolism
makes prostate cancer different from many other solid tumors and
provides a group of new therapeutic targets.

This review mainly discusses the metabolic reprogramming in
prostate cancer and how glycolysis, mitochondrial function, and
lipid metabolism work together. It also describes new metabolic
targets and therapeutic strategies which may help in improving the
outcome in both hormone-sensitive and castration-resistant stages.

Metabolic reprogramming in prostate cancer

Glucose enters the cell through glucose transporters (GLUTs) and
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then goes through glycolysis with the help of main enzymes such
as hexokinase (HK), phosphofructokinase (PFK), and pyruvate
kinase (PK) (Figure 1) [17]. Mitochondria are the main organelles
responsible for energy production and also control many metabolic
signals through TCA cycle and oxidative phosphorylation [18].
Under normal oxygen condition, pyruvate from glycolysis is
transported into mitochondria by mitochondrial pyruvate carrier
and then converted to acetyl-CoA. This acetyl-CoA enters into
TCA cycle and helps to produce ATP efficiently (Figure 2) [19].
Mitochondrial dysfunction is a common feature in prostate
cancer which can happen due to mutations in mitochondrial
DNA, abnormal expression of TCA cycle enzymes, and electron
transport chain leakage. These changes cause oxidative stress
and disturb the balance between oxidant and antioxidant systems
[20]. In contrast to many other solid cancers that mostly depend
on aerobic glycolysis (Warburg effect), early stage prostate cancer
still uses mitochondrial oxidative phosphorylation as main energy
source. As the disease moves into advanced stage, tumor cells
develop metabolic plasticity and shift toward glycolytic, lipogenic,
and cholesterol based energy process [21]. This is under the control
of androgen receptor signaling and mitochondrial pyruvate carrier
activity which together modify mitochondrial metabolism to
support oxidative energy generation [22, 23]. Normal prostate
epithelial cells contain high zinc levels that stop mitochondrial
aconitase and block citrate oxidation. But in cancer, zinc uptake
decreases due to low expression of zinc transporter proteins,
which allows citrate oxidation and helps the TCA cycle to continue
[22, 24]. When prostate cancer becomes advanced, especially
CRPC, cells become more dependent on glycolysis and lactate
production [23, 25]. This metabolic change is also regulated by
fibroblast growth factor (FGF)/fibroblast growth factor receptor
1 (FGFR1) pathway that increases lactate dehydrogenase (LDH)
level and activity [26]. Hyperactive LDHA promote cancer cells
aggressiveness by lowering mitochondrial pyruvate consumption
and strengthening glycolysis [27]. HK2 related glycolysis is also
linked with CRPC progression, especially in cases with PTEN
or TP53 loss [28]. These observations indicate that co-targeting
glycolysis and mitochondrial oxidative phosphorylation can be a
good strategy for prostate cancer therapy (Figure 1 and 2).
Prostate cancer also shows high de novo fatty acid synthesis
which is controlled by key enzymes such as ATP citrate lyase
(ACLY), acetyl-CoA carboxylase (ACAC), and fatty acid synthase
(FASN). ACLY converts citrate into acetyl-CoA, then ACAC
changes it into malonyl-CoA, and FASN uses malonyl-CoA to
make palmitate. Palmitate is further modified by stearoyl-CoA
desaturase and ELOVL enzymes to form complex lipids like
triacylglycerols (Figure 3) [29, 30]. These lipogenic enzymes are
often increased in prostate cancer and are also related to androgen
receptor and PI3K/AKT/mTOR signaling that promote lipid
production and storage [31]. As a result, there is higher amount
of phospholipids, sphingolipids, and triglycerides accumulated in
lipid droplets, which is known as “lipogenic phenotype.” This type
of metabolism is more common in metastatic CRPC and shows
aggressive behavior [32]. Besides new lipid formation, prostate
cancer cells also increase fatty acid uptake and transport using
membrane proteins such as CD36 (fatty acid translocase), fatty
acid transport proteins (FATPs), and fatty acid-binding proteins
(FABPs) [33]. In PTEN-deficient models, deleting CD36 reduces
fatty acid uptake, decreases oncogenic lipid content, and slows
tumor progression [34]. CD36 is also related to metastasis because
metastatic cells need fatty acid uptake for colonizing new sites
[35]. High CD36 expression is connected with poor prognosis [36].
FATPs, especially FATP6, are found in high amount in prostate
cancer and linked with lower survival [37]. FABPs like FABP4 and
FABPS help in moving fatty acids inside the cell. FABP4 interacts
with peroxisome proliferator-activated receptor gamma (PPARY),
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Figure 1. Targeting glycolysis in prostate cancer. Cancer cells often rely on glycolysis for energy production. Various enzymes involved in this
process, including GLUT1, HK2, PFK1, PFKFB3, PKM2 and LDHA, are often dysregulated in prostate cancer cells, fueling tumor progression
and disease aggressiveness. Different inhibitors, both synthetic and natural (highlighted in maroon boxes), have shown potential to target these

metabolic vulnerabilities of glycolysis and alleviate disease aggressiveness in prostate cancer.

thereby helping in proliferation and differentiation [38]. FABPS is  activates genes like vascular endothelial growth factor (VEGF)
hyperactive in advanced prostate cancer cases, where it supports ~ [39]. FABPS can also regulate the expression of AR-V7, keeping
tumor growth by sending fatty acids to PPARy, which, in turn, CRPC growing even under androgen receptor targeted therapy



4

[40].

Fatty acid p-oxidation (FAO) presents another source of energy
in prostate cancer cells (Figure 2), especially under nutrient-
deprived conditions. Carnitine palmitoyltransferase 1A (CPT-
1A) is the main enzyme that controls FAO and is found high in
prostate cancer. Inhibition of CPT-1A, together with androgen
receptor blockers like enzalutamide, can reduce tumor growth
by changing AKT activity and activating the INPP5K pathway
[41]. CPT-1B, another isoform controlled by androgen receptor,
also helps in castration resistance by maintaining AKT signaling
[42]. a-Methylacyl-CoA racemase (AMACR), a peroxisomal
enzyme involved in B-oxidation of branched fatty acids, is
strongly expressed in prostate cancer and is used as diagnostic and
therapeutic marker [43]. Interestingly, in neuroendocrine prostate
cancer, which is a very aggressive type, tumor cells depend less
on FAO and more on glutamine metabolism. They show low
kidney-type glutaminase and high glutaminase 1 (GLSI) xpression
to adjust under nutrient stress and therapy [3]. Prostate cancer
also increases cholesterol biosynthesis through the mevalonate
pathway. Cholesterol works as a membrane part and also as
precursor for androgen synthesis [44]. The enzyme 3-hydroxy-
3-methylglutaryl-CoA reductase (HMGCR) is the main step
in cholesterol production and is high in enzalutamide-resistant
cells, connecting cholesterol metabolism with drug resistance
[45]. Statins, which block HMGCR, can reduce this resistance
and slow tumor growth [46]. Prostate cancer cells also improve
cholesterol uptake by increasing low-density lipoprotein (LDL)
receptors and changing ATP-binding cassette (ABC) transporters
[32]. High cholesteryl ester level in lipid droplets, promoted by
sterol regulatory element-binding protein 2 (SREBP2) and LDL
receptors, supports aggressive behavior [47]. Loss of PTEN,
which is common in prostate cancer, activates PI3K/AKT/mTOR
pathway that promotes cholesterol storage and helps cell survival
[32]. In general, prostate cancer metabolism shows dynamic
changes in mitochondrial respiration, glycolysis, lipid production,
fatty acid oxidation, and cholesterol metabolism (Figure 1-3).
These pathways are tightly controlled by oncogenic signals and
change under therapy stress. Understanding their interaction can
help in designing combination treatments to target these metabolic
weaknesses and overcome drug resistance in prostate cancer.

Targeting glycolysis in prostate cancer

Glycolysis is highly active in advanced prostate cancer and
supports tumor cells for energy supply, biosynthesis, and stress
resistance. Many glycolytic enzymes and glucose transporters are
overexpressed, such as glucose transporter 1 (GLUT1), hexokinase
2 (HK?2), and pyruvate kinase M2 (PKM2), which make them
potential drug targets (Figure 1). GLUTI is a membrane protein
responsible for glucose entry and plays an important role in
maintaining glycolytic activity in prostate cancer [48]. When
GLUT]1 is blocked, glucose metabolism reduces and apoptosis
becomes higher. Genistein, a natural isoflavone from soy, acts as an
ATP competitive inhibitor and lowers GLUTI level and function,
leading to reduced glucose uptake [49]. Genistein also promotes
apoptosis by blocking p38 MAPK pathway and activating
caspase-3 [50]. Combination of genistein with plumbagin gives
stronger effect by increasing ROS and reducing glutathione (GSH),
which decreases cell growth [51]. It also increases sensitivity
of prostate cancer cells to the IGFIR inhibitor AG1024 during
radiation, which leads to more apoptosis [52]. The specific GLUT1
inhibitor STF-31 also blocks glucose transport directly. When
used alone it decreases tumor size in C4-2 xenograft models,
and when combined with enzalutamide, it increases apoptosis in
CRPC [53]. Another agent, monoethanolamine, reduces glucose
uptake by suppressing hypoxia-inducible factor 1-alpha (HIF-1a)
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and activates p53 related apoptosis [54]. Monoethanolamine also
prevents movement of GLUT1 to cell membrane, thus reducing
energy availability [55]. Leptosidin, a flavonoid compound, has
strong antioxidant property and decreases glycolysis by reducing
ROS and blocking SIRT1/GLUT1 signaling, leading to androgen
receptor independent apoptosis [56].

Hexokinase 2 (HK?2) catalyzes the first step of glycolysis and is
found high in prostate cancer, mainly in low oxygen conditions. It
helps the cells to survive through aerobic glycolysis [57]. 2-Deoxy-
D-glucose (2-DG), a glucose analog, inhibits HK activity and
lowers glycolytic rate. Early trials showed some benefit but long-
term use caused resistance [58]. When 2-DG is combined with
metformin, an autophagy inhibitor, apoptosis becomes stronger
[59]. Polysaccharide C-type lectin (PCL), a mannose-specific
lectin, interacts with epidermal growth factor receptor (EGFR) and
lowers HK2 expression-driven glycolysis, ultimately promoting
apoptosis [60]. Brassinin, a natural phytoalexin from cruciferous
vegetables, blocks MAPK pathway, leading to HK?2 inhibition,
ROS production and cell death [61]. Phosphofructokinase-1 (PFK1)
and its regulator PFKFB (6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase) control the speed of glycolysis. In prostate cancer,
PFK1 and PFKFB3 are usually higher and increase glycolytic rate
for tumor survival [62]. Citrate, which naturally inhibits PFKI,
can reduce both glycolysis and TCA cycle, resulting in low energy
and slow tumor growth [63]. Some small molecules such as 3PO
block PFKFB3 by inhibiting fructose-2,6-bisphosphate synthesis,
which reduces glucose consumption, increases ROS, and induces
autophagy [64]. B-Elemene, a plant compound from traditional
Chinese medicine, decreases PFKFB3 expression, reduces
lactate formation, slows proliferation, and improves sensitivity
to chemotherapy [65]. Thus, PFK and PFKFB3 are considered as
important therapeutic targets for metabolic treatment of prostate
cancer.

PKM2 controls the final step of glycolysis. Natural compounds
like oleanolic acid reduce PKM2 level, induce apoptosis,
and cell cycle arrest in prostate cancer cells [66]. Shikonin, a
naphthoquinone compound, inhibits PKM2 and increases ROS
together with AMPK activation. It is highly effective when used
in combination with chemotherapeutic drugs like cabazitaxel [67,
68]. Caffeic acid phenethyl ester (CAPE) also decreases glycolysis
and androgen receptor signaling, which causes toxicity in prostate
cancer cells [69]. Lambertianic acid, obtained from Pinus species,
reduces lactate production and inhibits PKM2 phosphorylation,
disturbing PKM2/B-catenin axis that controls tumor growth [70].
LDH, mainly its LDHA isoform, plays a main role in converting
pyruvate to lactate and maintaining Warburg effect. LDHA is
overexpressed in prostate cancer and linked with tumor growth and
drug resistance [71]. Different LDHA inhibitors show promising
preclinical activity. FX11, a competitive LDHA inhibitor, reduces
lactate generation, decreases glucose uptake, increases oxidative
stress, and stops metastasis [72]. Curcumin, a polyphenolic
compound from Curcuma longa, induces endoplasmic reticulum
stress, increases ROS, and upregulates pro-apoptotic genes. It
also reduces LDH expression and affects CD44 positive prostate
cancer cell survival [73, 74]. Oxamate, a pyruvate analog, blocks
LDH competitively and lowers lactate production. Combination
of oxamate (or sodium oxamate) with docetaxel in CRPC models
gives better results, reducing tumor growth and improving drug
response [75]. These studies suggest that PKM2 and LDHA, are
important metabolic targets and their inhibition could be useful,
particularly in combination therapy approaches.

Targeting mitochondrial dysfunction in prostate cancer

Mitochondrial dysfunction has an important role in prostate
cancer progression and also contributes to changes in energy
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balance and therapy resistance. Among the different mitochondrial
systems, the pyruvate dehydrogenase complex and mitochondrial
respiratory chain are considered as main therapeutic targets
(Figure 2). Pyruvate dehydrogenase kinase (PDK) acts as a
key checkpoint enzyme that inhibits pyruvate dehydrogenase
(PDH), which converts pyruvate into acetyl-CoA. This inhibition
shifts metabolism toward glycolysis and reduces oxidative
phosphorylation, promoting the Warburg effect and tumor growth

5

[76]. Blocking PDK activity can help to restore mitochondrial
respiration and bring back oxidative metabolism. Dichloroacetic
acid (DCA) is a well-known PDK inhibitor that activates PDH and
moves pyruvate into the TCA cycle. In prostate cancer models,
DCA was shown to reduce proliferation and increase apoptosis
by improving mitochondrial oxidative activity [77]. Phenyl
butyrate also helps mitochondrial function by reducing PDH
phosphorylation and increasing oxidative phosphorylation [78].
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Figure 2. Targeting mitochondrial dysfunction in prostate cancer. As pyruvate exits glycolysis, it is converted into Acetyl-CoA, which serves as

fuel for tricarboxylic acid (TCA) cycle. Co-enzymes, NADH and FADH?2 produced in TCA cycle then aid electron transport chain complexes in

the inter-membrane space of mitochondria to produce energy in the form of ATP. Various enzymes involved in different steps of this process are

often dysregulated in prostate cancer cells, leading to mitochondrial dysfunction and tumor progression during early stages of prostate cancer.

Different inhibitors, both synthetic and natural (highlighted in maroon boxes), have shown potential to target these metabolic vulnerabilities of

mitochondrial dysfunction and alleviate disease aggressiveness in prostate cancer.
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limit disease progression in prostate cancer.

The mitochondrial electron transport chain consists of Complexes  balance. Each of these complexes can be targeted to block tumor
I to V and is necessary for ATP production and maintaining redox =~ metabolism. Complex I (NADH: ubiquinone oxidoreductase)
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transfers electrons from NADH to coenzyme Q (ubiquinone) and
pumps protons across the inner mitochondrial membrane [79,
80]. Different inhibitors of Complex I have been studied. BAY 87-
2243 increases intracellular reactive oxygen species (ROS) and
activates AMPK pathway leading to apoptosis [81]. Some newer
Complex I inhibitors like EVT-701, ASP4132, and BAY-179 are
also showing good results, although their exact mechanisms are
still under study [82]. Complex II (succinate dehydrogenase,
SDH) is another important part of mitochondrial metabolism.
a-Tocopheryl succinate (a-TOS) acts as a competitive inhibitor of
SDH by binding to QP and QD sites and causes ROS production
and apoptosis [83]. Other inhibitors such as thenoyltrifluoroacetone
(TTFA), malonate, and itaconate can also block SDH and increase
mitochondrial stress. TTFA has shown better result when used
together with cisplatin, improving drug sensitivity [82]. Complex
III transfers electrons between cytochrome b and cytochrome ¢
and can be inhibited by compounds like antimycin A, mahanine,
ascochlorin, and myxothiazol. These inhibitors disturb electron
transport, raise ROS level, and increase oxidative stress [82].
The antimalarial drug atovaquone targets Complex III and
blocks growth of prostate cancer stem cells (CSCs) by forcing the
metabolism from oxidative phosphorylation toward glycolysis and
thus reduces tumor proliferation [84]. Complex IV (cytochrome c
oxidase) can also be targeted but its direct inhibitors like hydrogen
sulfide, carbon monoxide, cyanide, and azide are very toxic, which
limits their clinical use [85]. A compound called Cleopastine shows
some antitumor activity by reducing the expression of cytochrome
¢ oxidase subunit 6B1 and decreasing prostate cancer cell growth
[86]. Complex V (ATP synthase) performs the final step of ATP
formation. Oligomycin, a peptide antibiotic, inhibits ATP synthase
and disturbs energy production in mitochondria [87]. Overall,
targeting mitochondrial dysfunction either by blocking enzymes
such as PDK or by inhibiting different complexes of electron
transport chain can be a strong therapeutic approach for prostate
cancer. These strategies affect energy balance, increase oxidative
stress, and finally lead to apoptosis of tumor cells. However, more
detailed studies and improved delivery methods are required before
such treatments can be applied safely in clinical practice. cancer
cells, leading to mitochondrial dysfunction and tumor progression
during early stages of prostate cancer. Different inhibitors, both
synthetic and natural (highlighted in maroon boxes), have shown
potential to target these metabolic vulnerabilities of mitochondrial
dysfunction and alleviate disease aggressiveness in prostate
cancer.

Targeting dysregulated lipid metabolism in prostate cancer

Lipid metabolism plays an important role in prostate cancer
growth, especially through de novo lipogenesis and cholesterol
synthesis (Figure 3). FABPs play an important role in prostate
cancer. FABPS5 in particular has been reported as a good
therapeutic target. The small molecule SBFI26, made from
a-truxillic acid, decreases fatty acid uptake and PPARy level in
both cells and animal models [88]. Improved versions, SBFI-102
and SBFI-103, show strong anticancer activity across different
prostate cancer lines and reduce tumor size in xenograft models
[89]. Another form, mutant FABP5 (dmrFABPS), which cannot
bind fatty acids, decreases cell proliferation, migration, and
metastasis [90]. Other enzymes and regulators of lipid and
cholesterol metabolism also provide new drug opportunities.
ACLY, which converts citrate into acetyl-CoA for lipid formation,
is frequently high in prostate cancer [91]. ACLY interacts with
AMPK and androgen receptor, and helps the tumor survive in
low androgen situations [92]. Blocking ACLY with BMS-303141
activates AMPK, causes energy stress, and increases sensitivity
of CRPC cells to androgen receptor blockers like enzalutamide.

7

This combination decreases androgen receptor expression, inhibits
growth, and increases apoptosis [92]. Cucurbitacin B, a compound
from cucumber plants, also targets ACLY and decreases cell
viability [93]. ACAC, as an important enzyme in lipid metabolism,
converts acetyl-CoA to malonyl-CoA. When ACAC is inhibited,
lipogenesis is reduced and p-oxidation becomes higher, which
suppresses tumor proliferation [94]. On the other hand, FASN
is one of the main drug targets because it is highly expressed in
prostate cancer. Triclosan, a commonly known antimicrobial
compound, disturbs fatty acid synthesis and causes metabolic
stress leading to apoptosis [95]. Sulforaphane, a natural compound
from cruciferous vegetables, suppresses ACAC and FASN in
the transgenic adenocarcinoma of the mouse prostate (TRAMP)
model, reducing tumor growth and incidence. SFN treatment
also lowers ATP, free fatty acids, phospholipids, and acetyl-CoA
levels in plasma and prostate tissues [96]. The selective FASN
inhibitor IPI-9119 blocks metastatic CRPC by reprogramming
lipid metabolism and downregulating both full-length androgen
receptor and its splice variant AR-V7 at mRNA and protein levels
[97]. FASN inhibition also decreases palmitate synthesis, which
is needed for protein palmitoylation and tumor growth. TVB-
3166 reduces tubulin palmitoylation, leading to disorganized
microtubules and reduced viability of cancer cells [98]. Silibinin
blocks hypoxia-induced lipogenesis by lowering ACAC and FASN,
which helps limit tumor survival in low oxygen conditions [99].
These findings highlight the importance of targeting fatty acid
transport and signaling in prostate cancer.

SREBP1 and SREBP2 act as main transcription regulators for
genes involved in fatty acid and cholesterol production. Blocking
SREBP activity has shown promise as a therapeutic approach.
Fatostatin, a small-molecule inhibitor which stops SREBP from
binding to SREBP cleavage-activating protein (SCAP), shows
strong anticancer effect in prostate cancer models [100]. In cell line
studies, fatostatin reduces proliferation, migration, and invasion,
and in animal models it causes cell cycle arrest and apoptosis [101].
Fatostatin also increases the effect of docetaxel chemotherapy
in both androgen receptor-positive and -negative prostate cancer
cells. The combination effect is higher in cells with TP53 mutation,
suggesting fatostatin may be helpful to overcome therapy resistance
[102]. Studies in mouse models further show that fatostatin reduces
tumor growth and lymph node metastasis [101]. Several natural
products also show activity against lipid metabolism in prostate
cancer. Extracts from Withania somnifera inhibit SREBPI,
FASN and ACAC, thereby disturbing lipid synthesis and inducing
apoptosis in cancer cells [103]. Eriobotrya japonica extract
targets both lipid and androgen receptor signaling by blocking
the SREBPI, resulting in diminished androgen receptor level and
induction of apoptosis [104]. The medicinal fungus Ganoderma
tsugae exert its anticancer effects by suppressing SREBP-driven
lipogenesis as well [105]. Betulin, a plant-based triterpenoid,
suppresses SREBP1 and reduces glutathione peroxidase 4 (GPX4)
expression, resulting in ferroptosis induction [106]. Silibinin, a
flavonolignan from milk thistle, prevents nuclear transport of
SREBP1 through AMPK activation, reducing lipid and cholesterol
storage and slowing androgen-independent prostate cancer growth
[99]. Cholesterol metabolism is another main area for treatment.
Statins, which inhibit 3-hydroxy-3-methyl-glutaryl-CoA reductase
(HMGCR), the key enzyme of the mevalonate pathway, reduce
prostate cancer proliferation and migration by inducing apoptosis
and cell cycle arrest [107]. Among statins, simvastatin shows
strong tumor-suppressive effect in xenograft models [108]. Liver
X receptors (LXRs) are also involved in lipid control and prostate
cancer. Activation of LXRs can block epithelial-to-mesenchymal
transition, which is a key step in metastasis [109]. The LXR-a
agonist GW3965 activates tumor-suppressive signaling, while the
EGFR inhibitor Afatinib raises LXR-a expression by blocking



AKT and activating FOXO3A. Combination of Afatinib and
GW3965 gives a synergistic antitumor effect [110]. In summary,
lipid and cholesterol metabolism give many promising therapeutic
targets in prostate cancer. Blocking FABPs, ACLY, ACAC, FASN,
HMGCR, and SREBPs, and promoting LXRs (Figure 3) can
disrupt energy homeostasis and results in good clinical outcomes,
especially in advanced and resistant prostate cancer cases.

Conclusion and future perspectives

Metabolic reprogramming is now well accepted as one of the
important features of prostate cancer and is strongly connected
with tumor formation, progression, and therapy resistance.
Normal prostate epithelial cells mainly work to produce and
release citrate, but in early prostate cancer, the metabolism shifts
toward mitochondrial oxidative process. These cells depend
more on the TCA cycle and oxidative phosphorylation to meet
their energy demand. As the cancer becomes more aggressive
and reaches castration-resistant stages, more metabolic changes
appear. Tumor cells start to use aerobic glycolysis, glutaminolysis,
and high lipid synthesis, which are typical of the Warburg
effect. Such metabolic flexibility helps prostate cancer cells to
grow faster, avoid apoptosis, and survive under therapy stress.
Among different altered pathways, lipid metabolism has been
found as one of the most important in driving prostate cancer
aggressiveness. Androgen receptor signaling has a key role in
controlling important enzymes that regulate de novo lipogenesis,
fatty acid oxidation, and cholesterol synthesis. Dysregulated lipid
metabolism help tumor cells to grow as well as influence the tumor
microenvironment, including the immune cells present in it. From
therapeutic point of view, many studies are focusing on metabolic
enzymes, transporters and transcription factors like GLUTI,
HK2, PFK1, PKM2, LDHA, PDK, FABP5, ACLY, ACAC, FASN,
SREBPs and LXRs, using them as direct targets, or targeting
in combination with other drugs. Such targeted therapies have
potential in both hormone-sensitive prostate cancer and in CRPC.
However, clinical success is still limited because of activation of
alternate pathways, and possible side effects on normal tissues. In
future, more research is needed to design combination treatments
that can block multiple metabolic routes together, especially in
combination with anti-androgen or chemotherapeutic drugs. This
knowledge can help to identify specific metabolic vulnerabilities
and create new metabolism-based therapies which can improve
treatment response and survival in prostate cancer patients.
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