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Using Artificial Intelligence to Advance Renal Cancer Diagnosis, Treatment, and 
Precision Medicine

Abstract 
Renal cancer (RC) ranks tenth among the most frequently diagnosed cancers and affects both 
men and women worldwide. This disease is a significant global health issue, highlighting the 
need for accurate and rapid diagnostic tools to guide treatment. Conventional pathological 
methods have drawbacks, such as extended evaluation procedures and inter-observer 
inconsistency. Recent developments in artificial intelligence (AI) have enabled the progress 
of AI-powered computer-assisted diagnostic and predictive systems for various diseases, 
including cancer. A comprehensive literature review examined the latest advancements in 
AI and RC technologies. Advanced image analysis methods enable AI systems to measure 
molecular and cellular markers, thereby improving the precision and reproducibility of RC 
detection. This narrative review highlights the basic ideas and comprehensively summarizes 
modern AI methods for RC. Early clinical outcome prediction, renal carcinoma subtyping, 
grading, staging, and disease identification are only areas in which their potential has been 
demonstrated. Before applying this in daily practice, healthcare practitioners must understand 
the fundamentals and interact across different fields to standardize datasets, establish relevant 
outcomes, and merge interpretations.
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Introduction

RC is an aggressive tumor that originates in the epithelial lining 
of the renal tubule. It is the tenth most prevalent cancer in men 
and women globally [1]. The incidence of RC has increased 
significantly. In the United States, approximately 81,800 new cases 
of RC are anticipated in 2023, with an estimated 14,890 fatalities 
[2]. RC comprises diverse tumors characterized by varying 
histological features, molecular profiles, clinical outcomes, and 
treatment responses [3]. The predominant types include clear 
cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma 
(pRCC), and chromophobe renal cell carcinoma (chRCC) (Figure 
1) [4]. ccRCC is the predominant subtype, accounting for 70%-80% 
of cases, and is assessed using the World Health Organization/
International Society of Urology (WHO/ISUP) grading system [5]. 
Angiomyolipomas and oncocytomas are significant benign lesions 
in 0.4%, 3.0%, and 7.0% of solid renal tumors, respectively [6]. 
Although there have been improvements in the understanding of 
the molecular biology of RC and the development of more effective 
medicines, a wide range of therapeutic needs remains unaddressed, 
and significant knowledge gaps persist.
    AI has transformed medical research and clinical practice, 
significantly improving the diagnosis, management, and prevention 
of various cancers [7-9]. Advanced AI techniques, including deep 
learning (DL), machine learning (ML) [10], and natural language 
processing, and offer considerable promise for enhancing research 
in the field of RC [11]. These technologies employ extensive 
and varied datasets, including radiological images, genomic 
data, histopathological results, and clinical records, to facilitate 
early detection, prognostic evaluation, treatment planning, and 
monitoring of therapeutic outcomes [12, 13]. The primary factors 
that lead to kidney carcinoma are illustrated in Figure 2.
    In recent years, several promising studies have been published 
on using AI for treating RC and other urologic tumors. Several 
analyses have been performed to summarize and evaluate the 
role of AI in RC; however, there is a scarcity of comprehensive 
systematic assessments specifically addressing AI-related studies 
in RC [14, 15]. Our primary objective in writing this narrative 
review is to focus solely on AI and its role in RC, providing 
medical professionals and researchers with valuable information 
with the ultimate aim of advancing patient outcomes and updating 
the RC intervention standards.

Analysis criteria

An electronic repository and search application were employed to 
comprehensively evaluate the peer-reviewed literature, including 
original research related to experimental and qualitative research, 
case study collections, and other relevant publications. Key 
databases such as PubMed, Google Scholar, Scopus, Web of 
Science, bioRxiv, medRxiv, CNKI, and WanFang Data are the 
major information systems used in medical studies. The search 
was conducted between January 2017 and January 2025 using 
the following keywords either separately or in combination: 
“Renal Tumors”, “Kidney Cancer”, “Renal cancer”, “Renal 
Cell carcinoma”, “Clear Cell RCC”, “Non-Clear Cell RCC”, 
“papillary renal cell carcinoma”, “Artificial Intelligence”, “Machine 
Learning”, and “Deep Learning”. To illustrate the current 
landscape of AI in renal cancer, we selected 70 high-yield articles 
for this narrative review.

Artificial intelligence

AI is a research domain that creates computer systems that 
mimic human intellectual capabilities [16]. Complex computer 
technologies are used to perform activities that typically 

require human intelligence. These activities involve observing, 
discovering patterns, making decisions, and solving problems at 
or above human levels [17]. AI aims to create a machine that can 
accurately interpret its environment and undertake actions that 
enhance the probability of achieving success [18]. In medicine, 
AI utilizes complex algorithms, such as ML and DL, to evaluate 
sophisticated medical records, facilitate diagnostic evaluation and 
therapeutic strategies, and improve treatment efficacy [19, 20]. ML 
methods consist of algorithms that utilize input data to generate 
predictions, classifying them into the more general category 
of AI [21, 22]. DL represents a specialized approach within the 
field of ML that emerged from the progressive development of 
artificial neural networks [23, 24]. AI is transforming multiple 
medical fields and can address significant challenges in oncology, 
ultimately improving the accessibility and standards of cancer care 
worldwide.
    Initially, AI platforms depended on rule-based thinking 
performed by computer systems in accordance with a set of steps 
and protocols developed by human specialists [25]. However, these 
systems are deficient in the cognitive capabilities necessary for 
handling “exceptional cases” that are not explicitly specified within 
the knowledge base [26]. Over the past decade, algorithms that 
facilitate the automation of image-based processes have evolved 
significantly. This transition has been marked by the resurgence of 
neural networks, an ML algorithm based on understanding human 
brain function. 
    Data is the primary requirement for all algorithms. This includes 
not only baseline patient details (e.g., age or comorbidities) but 
also data obtained during surgical procedures, such as surgical 
footage, staff engagement, and intraperitoneal pressure [27]. 
Owing to the accessibility of larger datasets, advances in algorithm 
development, and improvements in computing capabilities, there 
has been a surge in interest in this field of study, leading to the 
development of new “deeper” neural networks [28]. Using training 
data, algorithms can automatically learn the map of ‘hidden 
neurons’ connecting the input and output nodes without reasoning 
rules. DL algorithms exhibit a superior learning capacity to 
earlier AI models, effectively identifying complex, non-linear 
relationships within datasets. Therefore, DL has the potential to 
gradually resemble or even surpass human capabilities for highly 
complicated tasks and has been used in several healthcare settings 
[29].

Artificial intelligence and digital pathology in cancer care

Digital pathology (DP) enhances conventional pathological 
techniques and specializations [30]. It plays a vital role in 
clinical practice and has become a technological necessity in 
scientific laboratories [31, 32]. DP employs advanced technology 
and computer-augmented instruments to transform visual 
representations from conventional microscope slides into high-
definition digital images [33].
    Over the past two decades, whole-slide images (WSIs) have 
progressed significantly, facilitating DP and high-quality slide 
storage [34]. WSI is a technology that facilitates the creation and 
viewing of high-quality digital images of microscopic slides on 
computer screens [35].
    Initially, DP was defined to encompass the digital capture 
of WSIs using sophisticated slide-scanning methods. Its 
definition has since broadened to include the application of 
AI techniques for the detection, segmentation, diagnosis, and 
analysis of computerized images (Figure 3) [36]. To the best of 
our knowledge, Mukhopadhyay et al. conducted the first large-
scale, multidisciplinary evaluation of the diagnostic accuracy of 
DP and traditional microscopy. The study consisted of samples 
from 1,992 patients with distinct tumor classifications, and 16 
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surgical pathologists collaborated on the study. The outcome of 
this research suggests that the primary diagnostic effectiveness 
of WSIs is not inferior to that of traditional microscopy-based 
methods, with a significant variation rate from the normal range of 
4.9% for WSIs and 4.6% for microscopy [37]. The comprehensive 
data offered by WSIs, in conjunction with other data modalities, 
enhances ML models in healthcare settings, resulting in improved 
accuracy and facilitating individualized healthcare [38].
    The integration of WSI and AI holds significant promise for 
oncology and precision medicine [39]. This emerging innovation 
holds promise for transforming cancer diagnostic processes [40]. 
It offers advantages such as image and data sharing, improved 
productivity, and integrated diagnosis. Moreover, it streamlines 
the processes within pathology workflows, elevates the quality 
of patient care, encourages collaborative efforts, strengthens 
physician responsibility, and reduces expenses by enhancing staff 
efficiency [41]. The combined use of DP and AI technologies 
can potentially improve cancer care by integrating quantitative 
tissue analysis with subjective assessments by experienced 
pathologists. Utilizing digital imaging and AI can provide deeper 
insights into cancer characteristics, leading to more focused and 
effective treatment methods. However, the pathway to this vision 
is not without its difficulties or challenges. Table 1 outlines the 
limitations of AI use in DP.

Artificial intelligence in renal cancer (RC)

In recent years, AI has revolutionized the field of RC diagnostics 
by introducing innovative approaches that enhance the accuracy 
and efficiency of cancer detection and diagnosis in patients 

with RC [54]. RC is a significant global health concern, with 
elevated prevalence and fatality rates. Accurate diagnosis and 
prognostic assessment are crucial for enhancing overall survival 
(OS) and updating management approaches [55]. The processes 
of classification, staging, and grading are intrinsically reliant 
on morphological data, which play a pivotal role in assessing 
patient prognosis [56]. Although AI has made significant strides, 
inconsistencies in observer evaluations and extended analysis 
duration remain prevalent.

Utilizing AI for the early detection of renal malignancy

Renal cell biopsy is regarded as the definitive method for 
diagnosing renal cancer before definitive treatment; however, 
imaging characteristics observed through CT and MRI also 
play a crucial role. The integration of AI in the early detection of 
RC has the potential to improve outcomes by facilitating timely 
diagnosis. It aims to enhance the non-invasive characterization 
of kidney tumors. The study looked at how to describe kidney 
tumours using CT imaging, mainly using radiomic features 
like texture and intensity from multi-stage CT-based images 
(preliminary contrast, corticomedullary junction, nephrographic, 
and, less often, excretory phase) [57, 58]. They used an ML 
classifier to differentiate between non-cancerous and cancerous 
pathologies or to group different subtypes [59]. Models aimed 
at differentiating benign from malignant kidney tumours have 
primarily concentrated on separating fat-poor angiomyolipoma’s 
from RC. These models have demonstrated excellent outcomes, 
with area under the receiver operating characteristic curve (AUC) 
performance metrics ranging from 0.9029 [60] to 0.96 [61, 62].

Figure 1. Illustration of various forms of renal cancer along with their associated survival rates.
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Erdim et al. analyzed the differentiation of oncocytomas and fat-
poor angiomyolipoma’s from all RC, achieving a favorable AUC 
of 0.91 [63]. Efforts to differentiate ccRCC from non-ccRCC have 
consistently achieved high AUC values of 0.91 [64], 0.93 [65], and 
0.95 [66], respectively. However, distinguishing chrRCC from non-
chrRCCs remains difficult, as evidenced by an AUC of 0.82. Han 
et al. observed a significant decline in performance when utilizing 
advanced DL techniques to classify three distinct RC subtypes: 
ccRCC, pRCC, and chrRCC, achieving an accuracy of 73%. This 
performance is notably lower than the 85% accuracy obtained in 
the binary classification task of distinguishing ccRCC from non-
ccRCC [67].
    The utilization of MRI, with its multiple sequences for the 
detailed characterization of a renal mass, introduces a considerable 
challenge in the realm of AI algorithm development [68]. This 
challenge stems from the need to create and train algorithms that 
can effectively process the expanded dataset and accommodate the 
variability in noise and signals across various scans [69]. Xi et al. 
recently highlighted the enhanced accuracy of a composite model 
utilizing a DL ResNet framework. This model, which integrates 
pre-surgical T2-weighted and T1-after contrast MRI series with 
clinical parameters such as gender, age group, and lesion mass, was 
evaluated against an imaging-based model and expert analysis for 
differentiating benign from cancerous renal lesions in a sample of 
1,162 patients. Despite the model’s innovative design, its reported 
overall accuracy of 70% (95% CI, 60%–77%), sensitivity of 92% 
(95% CI, 82%–97%), and specificity of 41% ( 95% CI, 28%–55%) 
indicate a pressing need for further refinement to enhance the AI 
model performance for broader clinical use [70].

Utilizing AI for the grading of renal cancer

Grading is crucial for estimating the prognosis of RC patients. 
Similar to distinguishing between indolent and aggressive 
RC subtypes, differentiating low-grade RCs from their more 
aggressive high-grade forms is essential for developing effective 
clinical management strategies. Despite being primarily replaced 
by the WHO/ISUP grading classification system, the Fuhrman 
grading system remains a significant independent prognostic 
tool, associated with an increased risk of cancer recurrence and 
a reduced likelihood of patient survival [71, 72]. The Fuhrman 
grading system is primarily concerned with nuclear morphology, 
focusing on the size and shape of the nucleus and the presence of 
prominent nucleoli. Nonetheless, it is essential to note that there is 
considerable variability between different observers and within the 
same observer over time [73].
    Chen et al. presented a model termed Retrieval with Clustering-
guided Contrastive Learning (RetCCL), which employs weak 
supervision to classify high-grade Fuhrman predictions [74]. 
In a related study, Zhen et al. presented the Self-Supervised 
Learning based Clustering-constrained Attention Multiple 
Instance Learning (SSL-CLAM) model. This innovative AI 
model, grounded in self-supervised learning, showed improved 
efficacy when used in conjunction with pathologists’ diagnostic 
assessments [75]. Although the Fuhrman grading system is valued 
for its practical application, its reliability is diminished because 
of evaluation inconsistencies among observers [76]. In response 
to these constraints, researchers affiliated with the ISUP and 
WHO developed a grading framework that classifies tumors into 
four distinct levels (1 to 4), determined by the degree of nucleoli 

Figure 2. The principal factors contributing to kidney cancer are presented.
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visibility [77]. Aziz et al. advanced the field by developing a 
ResNet-50-based attention based model that integrates patch 
release interpretations with center-based loss, thereby exceeding 
the performance of current innovative RC-grading models [78]. 
Koo et al. adopted a combination strategy that leveraged well-
established layouts to enhance the accuracy of cancer diagnosis 
[79]. Chanchal et al. introduced the RCC Grading Network 
(RCCGNet), which demonstrated superior accuracy compared 
with traditional models [80].
    Recent research has explored the application of AI to assess 
indirect measures of tumor behavior, particularly the SSIGN score, 
which evaluates stage, dimensions, severity level, and necrosis to 
predict ccRCC progression following radical nephrectomy [81]. 
Choi et al. conducted a study on an AI algorithm designed to 
preoperatively predict SSIGN scores, differentiating between low 
and high scores, in patients diagnosed with ccRCC who were to 
undergo MRI before surgery. The algorithm achieved a notable 
AUC of 0.94, indicating a high predictive accuracy [82].

Utilizing AI for the staging and prognosis assessment

RC staging plays a pivotal role in shaping therapeutic approaches 
and anticipating prognostic outcomes [83-85]. As the dimensions 
and positioning of cancer are pivotal in determining its stage, 
AI has demonstrated promise in delivering precise and uniform 
categorization of cancer. Yao et al. utilized the MIL approach to 
categorize RCC stages 1–4, resulting in a precision rate of 0.8 [86].
Survival risk estimation and analysis is a dynamic and expanding 
area of study. Beyond traditional statistical approaches like 
the Cox proportional hazards regression analysis model, the 

field is witnessing continuous and noteworthy developments 
[87, 88]. AI utilizes extensive clinical data, genomic data, and 
tomography datasets to estimate overall, progression-free, and 
recurrence-free survival accurately. These models support the 
automated extraction of features from data characterized by 
high dimensionality, thereby facilitating the discovery of new 
risk factors and prognostic indicators. Gao et al. focused on 
predicting lymph node tumor dissemination [89]; however, Liu 
et al. examined tumor mutation rate classification, reflecting a 
shift in therapeutic and research directions for RC [90]. Although 
staging classification shows significant potential, research in this 
area is comparatively limited when evaluated against studies 
on subtype classification and grading. The system complexity 
of creating a thorough analysis necessary for precise staging is 
partially responsible for this limitation. Moreover, the use of AI in 
RC research is still gaining momentum, contributing to the limited 
number of studies in this area.

Conclusion

AI is increasingly employed as a diagnostic and prognostic 
instrument in RC; however, the lack of extensive data presents a 
significant challenge for developing high-performing AI models. 
Facilitating collaboration among various centers is crucial for 
analyzing statistics inadequacies. For example, developing multi-
center networks in RC analysis can facilitate the acquisition of 
varied datasets, enhance the robustness of external assessments, 
and ensure the effectiveness of AI models function effectively 
in RC clinical settings. Additionally, subsequent research could 
benefit from the integration of multimodal strategies.

Figure 3. A comprehensive series of steps for DP in treating RC encompasses the procedure from biopsy to the outcome.
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In conclusion, ongoing research is dedicated to evaluating the 
roles of CT and MRI in diagnosing RC and forecasting clinical 
outcomes and therapeutic responses to optimize management 
strategies. The improvements in the timely detection of RC and the 
anticipation of treatment outcomes largely depend on recognizing 
ideal discriminative indicators tailored to specific diagnostic 
and predictive challenges. This progress is further supported by 
creating robust, consistent, and versatile AI-based diagnostic 
and predictive models. By outlining these future initiatives and 
recommendations, we seek to motivate researchers and investors 
to close this knowledge gap and realize the objective of developing 
an integrated system. This system should be reliably utilized for 
diagnosing renal tumors and predicting clinical outcomes and 
treatment responses, eventually contributing to advances in health 
care outcomes.
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