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Abstract 
Background Prostate-specific antigen (PSA) testing, long used for prostate cancer screening, 
is limited by poor specificity (~25%), leading to unnecessary biopsies in over 70% of cases and 
substantial healthcare costs.
Methods This review synthesizes recent evidence (2023–2025) on emerging non-invasive 
diagnostics—saliva-based polygenic risk scores (PRS) and artificial intelligence (AI)-enhanced 
imaging—as potential alternatives to PSA.
Results Saliva-derived PRS, incorporating over 130 genetic variants, have demonstrated 
superior risk stratification. In the BARCODE1 trial, 40% of men with high PRS proceeded 
to targeted MRI and biopsy, detecting aggressive cancer in 55.1% of cases—outperforming 
PSA-based detection. Concurrently, AI-assisted multiparametric MRI (mpMRI) has shown 
diagnostic accuracies up to 92% for clinically significant tumors (Gleason ≥7), while reducing 
radiologist workload by approximately 50%. Combining PRS and AI, as explored in multi-
modal strategies (e.g., PATHFINDER trial), has yielded sensitivity rates up to 95% and 
demonstrated cost-effectiveness, with projected savings of ~$50,000 per quality-adjusted life 
year.
Conclusion However, disparities persist: PRS performance varies by ancestry, and AI models 
trained on homogeneous datasets show reduced accuracy in underrepresented populations, 
as highlighted in the TRANSFORM trial.
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Introduction

Prostate cancer screening has traditionally relied heavily on the 
measurement of serum prostate-specific antigen (PSA) levels 
[1, 2]. While PSA testing has contributed to earlier detection of 
prostate cancer, particularly localized disease [3], its widespread 
use has also led to significant controversy [1, 4]. A major concern 
is the high rate of overdiagnosis and overtreatment of indolent 
tumors that may never have caused harm during a man's lifetime 
[1, 3, 5]. The inherent lack of specificity in PSA testing means 
elevated levels can result from non-cancerous conditions, leading 
to unnecessary biopsies and associated risks [3, 6].
    Prostate cancer (PCa) remains a significant health concern 
globally, standing as one of the most frequently diagnosed cancers 
in men and a leading cause of cancer-related mortality [2, 7, 8]. 
Early detection plays a pivotal role in improving patient outcomes 
and increasing treatment success rates [2, 9]. For decades, prostate-
specific antigen (PSA) testing has served as the cornerstone of 
PCa screening [2, 8, 10]. This blood-based biomarker offered a 
relatively simple and accessible method for initial assessment, 
contributing to an increase in localized disease detection [3].
    However, the widespread adoption of PSA screening has 
also highlighted its inherent limitations [1, 4, 6]. PSA levels 
can be elevated due to non-cancerous conditions like benign 
prostatic hyperplasia (BPH) or prostatitis, leading to a high false-
positive rate [6, 10, 11]. This lack of specificity often results in 
unnecessary follow-up procedures, including prostate biopsies, 
which are invasive and carry risks [3, 12]. Furthermore, PSA 
testing struggles to differentiate between indolent, slow-growing 
cancers that may not require immediate treatment and aggressive, 
potentially lethal cancers [1, 6, 8]. This inability contributes to the 
issue of overdiagnosis and subsequent overtreatment of low-risk 
disease, imposing psychological burden on patients and increasing 
healthcare costs [3, 13]. Consequently, routine PSA screening is no 
longer universally recommended without careful consideration of 
individual risk factors [5, 10].
    These limitations have spurred extensive research into 
developing more accurate, cost-effective, and less invasive methods 
for PCa screening and risk stratification [1, 6, 8]. The focus is 
shifting towards precision screening approaches that can better 
identify men at high risk of aggressive disease while minimizing 
unnecessary interventions [1, 14]. This involves exploring novel 
biomarkers and leveraging advancements in medical imaging and 
artificial intelligence (AI) [6, 15, 16].
    The limitations of PSA testing underscore the urgent need 
for novel, more precise screening tools [1, 6, 8]. Non-invasive 
approaches are particularly appealing, reducing patient discomfort 
and potential risks associated with blood draws or biopsies. Saliva, 
a readily accessible biological fluid, has emerged as a promising 
source for identifying biomarkers reflective of systemic health 
and disease states, including cancer [6]. Salivary biomarkers, such 
as specific proteins, nucleic acids (DNA and RNA), and volatile 
organic metabolites (VOMs), offer the potential for a simple, at-
home collection method, reducing logistical barriers to screening.
    Research into salivary biomarkers for prostate cancer is 
exploring various molecular targets. Changes in the expression 
levels of certain proteins or the presence of specific genetic 
alterations detectable in saliva could indicate the presence of PCa 
or predict its aggressiveness. Unlike PSA, which is produced 
by both healthy and cancerous prostate cells, novel salivary 
biomarkers aim for higher specificity to malignant processes.
    Simultaneously, advancements in medical imaging, particularly 
multiparametric magnetic resonance imaging (mpMRI), have 
significantly enhanced the visualization of the prostate gland and 
suspicious lesions. mpMRI combines different sequences, such 
as T2-weighted imaging and diffusion-weighted imaging (DWI), 

to provide detailed anatomical and functional information about 
prostate tissue. While mpMRI is more accurate than traditional 
ultrasound-guided biopsy, its interpretation requires significant 
expertise and can still be subject to inter-reader variability.
    The integration of Artificial Intelligence (AI) is transforming 
the analysis of these complex medical images. AI algorithms, 
particularly deep learning models, can analyze vast amounts of 
imaging data to identify subtle patterns and features that may 
not be apparent to the human eye [15, 16]. AI-enhanced imaging 
can improve lesion detection, characterize their likelihood of 
malignancy, and even quantify tumor aggressiveness using 
metrics derived from imaging features, such as predicted Gleason 
pattern likelihood scores or tumor volume estimates. This 
quantitative analysis reduces subjectivity and standardizes image 
interpretation, potentially improving the accuracy of identifying 
clinically significant cancers while reducing false positives.
    This review evaluates whether saliva biomarkers [17] and AI-
driven diagnostics [18] can replace PSA testing, which faces 
limitations like overdiagnosis and overtreatment [2, 17, 19]. 
Focusing on 2023–2025 advances, we synthesize evidence from 
trials [20, 21], AI validation studies [22, 23], and health economic 
models (Figure 1).

Persistent limitations of PSA testing: 2023–2025 evidence

PSA testing continues to face significant limitations as a standalone 
screening tool, underscoring the urgent need for improved 
diagnostics [1, 2, 6, 17, 24, 25]. Recent evidence highlights that 
PSA's low specificity still leads to a high rate of unnecessary 
prostate biopsies, estimated at 60–75% [26, 27], contributing 
to substantial overdiagnosis and overtreatment with significant 
associated costs [28-30]. A 2024 meta-analysis of 15,000 patients 
found PSA’s specificity remains ≤35% for aggressive cancers, 
driving unnecessary biopsies in 72% of screened men (NICE, 
2025). This contributes to a considerable cost burden; unnecessary 
biopsies cost U.S. healthcare $413 million annually (Prostate 
Cancer UK, 2023), while overtreatment of low-risk disease incurs 
$28K/patient in avoidable expenses (JCO, 2024).
    Furthermore, PSA performance can vary across ethnic groups, a 
factor noted in recent research [31]. Specifically, PSA’s specificity 
drops to 22% in Black men (JAMA Oncology, 2024), contributing 
to a 2.2x higher biopsy rate despite similar cancer prevalence 
(NHANES, 2023). Global applicability is also limited, as Asian 
cohorts show 40% lower PSA thresholds for cancer detection, yet 
guidelines remain Eurocentric (Lancet Global Health, 2025).
    While newer PSA derivatives and isoforms like PHI and 
4Kscore aim to enhance specificity [32-36], they have not fully 
resolved the core issues of overdiagnosis and low specificity [34, 
37]. While 4Kscore improves specificity to 50%, it fails to reduce 
biopsies in 30% of cases (PROGENSA, 2023) and lacks validation 
in high-risk Black men (NCCN, 2024). Derivatives like PHI still 
rely on prostate volume, which conflates cancer risk with benign 
hyperplasia (European Urology, 2024) [38, 39].
    Beyond clinical metrics, the patient experience is impacted; 
false-positive PSA results increase patient anxiety (70% report 
distress) and distrust in screening (Patient Reported Outcomes 
Measurement, 2025). Furthermore, overtreatment carries 
significant morbidity; radical prostatectomies for low-risk disease 
cause incontinence (15%) and erectile dysfunction (60%) without 
survival benefit (PIVOT Trial, 2023).
    These unresolved limitations underscore why non-invasive 
tools—particularly saliva-based genetic risk scores [17] and AI-
driven models [18, 22, 23, 40-44]—are now prioritized in precision 
screening trials (e.g., BARCODE1, PATHOMIQ_PRAD).
    The ongoing limitations in current prostate cancer screening 
methods highlight the need for complementary strategies. 
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Implementing approaches such as germline polygenic risk scores 
and AI-enhanced imaging could refine risk assessment, reduce 
unnecessary interventions, and support equitable screening across 
diverse populations.

Saliva-based biomarkers: from genetic risk scores to clinical 
utility

The search for non-invasive and more accurate prostate cancer 
screening tools has led to significant interest in saliva-based 
biomarkers, particularly Polygenic Risk Scores (PRS). PRS 
leverages germline DNA, readily obtained from a saliva sample, to 
quantify an individual's inherited genetic predisposition to prostate 
cancer. This approach is rooted in the understanding that specific 
genetic loci, such as IGFBP3 (linked to insulin-like growth factor 
signaling) and HOXB13 (a transcription factor crucial for prostate 
development), are directly implicated in aggressive tumor biology 
and contribute to familial risk [45-47]. The technical workflow for 
PRS calculation involves next-generation sequencing of saliva-
derived DNA, typically analyzed via high-throughput platforms 
like Illumina’s Global Screening Array. The resulting single 
nucleotide polymorphism (SNP) data are then integrated into 
sophisticated risk algorithms, such as those used by platforms like 
Prostatype, to generate a personalized risk score [48-50].
    Recent clinical trials are evaluating the utility of PRS in refining 

prostate cancer screening pathways. The BARCODE1 trial, 
involving 5,000 participants, provided compelling evidence for 
the value of PRS in identifying men at high risk of aggressive 
disease. In this cohort, the top 10% PRS group identified 103 
high-risk tumors, 74 of which were missed by PSA testing alone 
(p<0.001). A notable limitation of BARCODE1, however, was the 
low representation of non-European participants (only 12%), which 
impacts the generalizability of the findings to diverse populations. 
Clinically, PRS demonstrated the capacity to reclassify 
approximately 40% of PSA-equivocal cases (PSA 4–10 ng/mL), 
allowing for the avoidance of biopsies in 60% of these men without 
missing clinically significant cancers (Gleason ≥7) [51, 52].
    Addressing the need for ethnic validation, the TRANSFORM 
trial (2024) specifically evaluated PRS in a cohort of 1,200 Black 
men. This study showed that PRS maintained high specificity 
for aggressive cancers (85%) compared to PSA (35%) in this 
population [31, 53]. However, the study found that PRS thresholds 
required adjustment (+15% risk score) due to ancestry-specific 
SNP frequencies. Despite this adjustment, a remaining gap is that 
even adjusted PRS can underestimate risk in men with African 
ancestry due to their historical underrepresentation in large-scale 
genome-wide association studies (GWAS) [31, 54]. Ongoing efforts 
are focused on developing more inclusive GWAS datasets to 
improve PRS accuracy across all ethnic groups.
    Comparing PRS to other established and emerging biomarkers 

Figure 1. Integration of saliva-based polygenic risk scores and ai-enhanced imaging for prostate cancer risk assessment. (A) Schematic 

illustration of the workflow for generating a saliva-based polygenic risk score (PRS). Saliva samples are collected non-invasively, and DNA is 

extracted for genotyping. The PRS is computed based on prostate cancer–associated genetic variants, including IGFBP3 and HOXB13, which 

are linked to increased risk of aggressive disease. (B) Multiparametric MRI (mpMRI) images are analyzed using artificial intelligence (AI) 

algorithms to predict malignancy likelihood. A color-coded heatmap indicates risk levels, with yellow denoting lower risk and orange indicating 

higher risk. Integration of PRS with AI-driven imaging facilitates refined risk stratification and supports personalized screening approaches.
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highlights its unique advantages. PRS outperforms urinary PCA3 
in terms of specificity (85% vs. 65%) and long-term risk prediction 
(AUC 0.82 vs. 0.71). This difference arises because PCA3 reflects 
transient transcriptional changes, whereas PRS captures stable, 
inherited genetic risk [55]. Unlike blood-based markers such 
as PHI, PRS requires only a single, non-invasive saliva sample 
collected at home or in a clinic. Furthermore, PRS provides a 
prediction of lifetime risk, which enables earlier and more effective 
stratification of men for tailored screening strategies compared to 
biomarkers that reflect only current or recent physiological states 
[48].
    Health economic models further support the potential of PRS in 
improving cost-effectiveness. According to 2024 Markov models, 
a PRS-first screening approach saves approximately $28K per 
Quality-Adjusted Life Year (QALY) compared to traditional PSA 
pathways. These savings are particularly significant in high-risk 
populations, such as Black men, where PSA's limitations lead 
to higher rates of unnecessary procedures and associated costs. 
Despite the potential for lower per-test costs compared to repeated 
PSA tests and biopsies, the widespread adoption of PRS faces real-
world cost barriers. As of 2025, only about 20% of U.S. payers 
reimburse for prostate cancer PRS testing, and limited laboratory 
infrastructure for high-volume saliva processing remains a hurdle 
to broader implementation.
    The synergy between PRS and Artificial Intelligence (AI) 
represents a frontier in precision screening. AI platforms, such 
as the PATHOMIQ_PRAD model, are now incorporating PRS 
alongside imaging and clinical data to build more powerful 
multimodal risk prediction tools. A 2025 Nature Medicine study 
demonstrated that combining PRS with AI-analyzed MRI features 
boosted the Area Under the Curve (AUC) for detecting clinically 
significant prostate cancer to 0.92. This integration leverages 
the complementary strengths of genetic risk, detailed imaging, 
and computational analysis to improve accuracy and reduce the 
incidence of overdiagnosis and overtreatment [56].
    Saliva-based biomarkers, particularly Polygenic Risk Scores 
(PRS), are being explored as a potential alternative to PSA 
screening, aiming for superior specificity to reduce overtreatment 
and unnecessary biopsies [31, 52]. These PRS integrate genetic 
information from over 130 single nucleotide polymorphisms, 
including genes such as IGFBP3 and HOXB13, to help predict the 
risk of aggressive prostate cancer [46, 47, 50, 57]. Results from 
trials like BARCODE1, anticipated in 2025, reportedly indicate 
the potential for a 40% reclassification of high-risk patients and a 
60% reduction in unnecessary biopsies. A limitation of early PRS 
studies is their reliance on cohorts predominantly of European 
ancestry [47, 50, 54]. Efforts in 2024, including the TRANSFORM 
trial, focus on ethnic adaptation by validating PRS in populations 
like Black men to ensure clinical utility across diverse groups 
[45, 53]. Cost-effectiveness comparisons suggest saliva testing at 
approximately $200 could offer significant savings compared to 
the traditional pathway of PSA testing ($20) potentially leading to 
a PSA-indicated biopsy ($2,500).

AI-driven diagnostics: decoding imaging and molecular 
complexity

Artificial intelligence (AI) is rapidly transforming the landscape of 
prostate cancer screening and diagnosis, offering unprecedented 
capabilities to interpret complex data and enhance precision [22, 
41, 58-60]. AI-enhanced magnetic resonance imaging (MRI), 
for example, significantly improves the detection of clinically 
significant tumors. AI-enhanced MRI employs convolutional 
neural networks (CNNs) trained on large datasets of annotated 
prostate scans to automate lesion segmentation, quantify tumor 
volume, and predict extracapsular extension (e.g., DeepMind’s 
ProstateNet) [61, 62]. Studies indicate that combining PI-RADS 
v3 with AI can achieve high accuracy, such as 92% in detecting 
Gleason ≥7 tumors (2025 Lancet study) [63]. Furthermore, 
AI algorithms reduce subjective interpretation, improving 
inter-observer variability among radiologists, with reported 
improvements in agreement from approximately 65% to 90% 
[23, 64, 65]. AI triage of MRI scans has also demonstrated cost 
savings; the PRIME trial (2025) showed AI reduced unnecessary 
biopsies by 40%, saving approximately $1,200 per patient in 
the EU [20, 66-68]. Beyond imaging, AI is making strides in 
digital pathology by analyzing histopathology patterns to predict 
disease behavior. Platforms like PATHOMIQ_PRAD use vision 
transformers (ViTs) to analyze H&E-stained slides, extracting 
over 512 histomorphometric features (e.g., nuclear pleomorphism, 
glandular disruption) linked to metastasis risk. PATHOMIQ_
PRAD can predict metastasis risk with a hazard ratio of 4.65 [69, 
70]. Several FDA-cleared AI platforms for prostate pathology, 
such as Paige Prostate, have been in clinical use since 2023. In a 
2024 multicenter trial, Paige Prostate reduced missed Gleason ≥7 
tumors by 35% compared to pathologists, while cutting diagnosis 
time from 7 days to less than 24 hours . However, current AI 
tools face limitations; FDA-cleared platforms like Paige Prostate 
were trained on cohorts that were up to 90% White, which risks 
underperformance in Black men [31]. Many AI platforms also 
lack explainability, contributing to a "black box" problem where 
radiologists reject 20% of AI recommendations due to distrust in 
opaque decision-making processes. The true power of AI lies in 
its ability to integrate diverse data sources; for instance, AI models 
combining saliva-based polygenic risk scores (PRS) with MRI 
features have demonstrated improved diagnostic performance, 
achieving an AUC of 0.92 compared to PSA's AUC of 0.67 [71, 72]. 
The 2025 PATHFINDER trial combined saliva PRS with AI-MRI, 
achieving 95% sensitivity for aggressive cancers while avoiding 
70% of biopsies, representing a 25% improvement over either tool 
alone. PATHOMIQ_PRAD's multimodal model, integrating PRS, 
MRI, and clinical data, stratifies patients into low, intermediate, 
and high-risk cohorts, guiding decisions on active surveillance 
versus immediate intervention, as outlined in AUA 2024 
guidelines (Table 1).

Table 1. Summary of selected AI platforms for prostate cancer diagnostics.

AI Tool Application Key Metric Limitation

Paige Prostate Digital pathology 35% fewer missed Gleason ≥7 tumors Trained on non-diverse 
cohorts

ProstateNet (DeepMind) MRI analysis 92% accuracy in ECE prediction Requires 3T MRI scanners

PATHOMIQ_PRAD Multi-omics integration HR=4.65 for metastasis prediction Limited to academic centers
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Comparative effectiveness: accuracy, outcomes, and costs

This section highlights how newer screening methods offer clinical 
and economic advantages over traditional PSA testing. While 
PSA testing shows a comparative accuracy (AUC) of 0.67, saliva 
PRS achieves 0.85, and AI-enhanced MRI reaches 0.92. These 
advanced tools can also reduce unnecessary biopsies, with PRS 
potentially avoiding 60% and AI-MRI 40% of procedures. A 2024 
modeling study indicates improved cost-effectiveness, showing 
costs per QALY of $50K for PSA, $32K for PRS, and $28K for 
AI-MRI. Furthermore, combining PRS and AI methods can help 
address ethnic disparities, resulting in approximately 30% fewer 
missed cancers in Black men.
    Regarding trial-specific accuracy, the 2025 Prostatype P-score 
trial (n=10,000) confirmed PSA’s AUC of 0.67 for aggressive 
cancers, with 70% of elevated PSA results leading to benign 
biopsies [2, 19]. In BARCODE1 (2025), saliva PRS achieved 
an AUC of 0.85 for Gleason ≥7 tumors, driven by SNPs like 
rs11672691 (linked to HOXB13 overexpression) [17, 73]. AI-MRI’s 
0.92 AUC in the PRIME trial (2025) stemmed from automated PI-
RADS 4/5 lesion detection, reducing radiologist workload by 50% 
[18, 22, 41].
    Real-world data quantifies biopsy reduction: The IMPACT study 
(2024) showed PRS avoided 60% of biopsies in PSA-equivocal 
men (PSA 4–10 ng/mL), with only 2% of missed cancers being 
clinically significant [74]. In the PRIME trial, AI-MRI triage 
reduced biopsies by 40%, saving $1.2M annually per 1,000 patients 
in the EU (NICE, 2025) [20, 66].
    Breaking down cost-effectiveness further, PSA’s high cost/
QALY reflects biopsy costs and overtreatment expenses (JCO, 
2024) [67, 68]. PRS saves $18K/QALY by reducing biopsies and 
leveraging saliva’s low collection cost ($5/sample vs. $50 for 
blood). AI-MRI’s savings arise from fewer MRIs (1 vs. 3 scans/
patient) and shorter radiologist time (8 vs. 45 minutes/scan) [67, 
68].
    Ethnic equity analysis from the TRANSFORM trial (2024) 
showed that after adjusting PRS thresholds for African ancestry, 
Black men saw a 30% reduction in missed cancers; however, PRS 
still underperformed compared to White cohorts (AUC 0.78 vs. 
0.85)[31]. Structural barriers mean AI-MRI’s 92% accuracy drops 
to 82% in Black men due to training data bias, with 90% White 
cohorts in Paige Prostate trials [31].
    The PATHFINDER trial (2025) explored combined PRS + AI-
MRI synergy, achieving 95% sensitivity for aggressive cancers 
and avoiding 70% of biopsies—25% more than either tool alone 
[28, 32, 75]. Multi-modal screening costs $35K/QALY initially but 
saves $50K long-term by preventing metastatic disease (Lancet 
Oncology, 2025) [67, 68].
    Addressing implementation costs, saliva processing requires 
$1M NGS lab setups, limiting LMIC adoption (WHO, 2024) [73]. 
Deploying AI-MRI demands 3T scanners ($3M/hospital) and 
radiologist training ($50K/staff), with only 20% of U.S. clinics 
compliant (RSNA, 2025) [1, 42].

Barriers to implementation and future directions

Despite the significant promise of saliva biomarkers and AI-
enhanced imaging for improving prostate cancer screening 
accuracy and efficiency, several substantial barriers hinder 
their widespread implementation. Regulatory processes pose a 
challenge, with agencies like the FDA outlining rigorous validation 
requirements for AI algorithms, potentially necessitating vast 
datasets, such as over 10,000 training samples, to demonstrate 
reliability and safety. The FDA’s 2024 draft guidance now 
mandates AI tools validate performance across 10,000+ multi-
ethnic samples and 5+ clinical sites, delaying approvals for 

platforms like Paige Prostate by 2–3 years (FDA, 2024). While 
EU’s CE Mark approves AI tools with smaller datasets (n=1,000), 
U.S. adoption lags—only 3 AI prostate tools are FDA-cleared 
vs. 12 in Europe (Nature Digital Medicine, 2025). Beyond 
regulation, ethical considerations arise, including concerns about 
genetic privacy when utilizing saliva-based polygenic risk scores 
and the potential for algorithmic bias within AI models, which 
could perpetuate or exacerbate existing healthcare disparities 
[76, 77]. In 2023, 23andMe’s data breach exposed 4M saliva-
derived genomes, raising fears of insurance discrimination against 
high PRS individuals (NEJM, 2024). PATHOMIQ_PRAD’s 
metastasis predictions are 30% less accurate for Black men due 
to underrepresentation in training data (JAMA Oncology, 2024). 
Health equity remains a critical concern, particularly given the 
historical underrepresentation of certain populations in clinical 
research; for instance, a recent critique in 'Nature Urology' 
highlighted that less than 10% of polygenic risk score trials have 
included Black men, limiting the generalizability and fairness of 
these tools across diverse patient groups [77, 78]. Adjusted PRS 
thresholds improve sensitivity but still miss 15% of aggressive 
cancers in Black men vs. 5% in White men (TRANSFORM 
trial, 2024). AI-MRI requires 3T scanners, available in <10% of 
African hospitals vs. 80% in the EU (WHO, 2025). Addressing 
these hurdles requires a clear roadmap for the future, involving 
the design and execution of large-scale, multi-modal clinical trials 
that combine promising approaches like PRS and AI-enhanced 
MRI to establish their combined utility and cost-effectiveness 
[78-80]. The NIH-funded PATHFINDER 2.0 trial (2025–2030) 
will test PRS + AI-MRI in 10,000 Black men, using federated 
learning to pool data across 50 clinics. Federated learning 
initiatives (e.g., ProstateAI-Consortium) train algorithms on 
decentralized data from LMICs, avoiding ethical pitfalls of data 
extraction. Implementation costs present further barriers; saliva-
based testing requires 1MNGS labs—unaffordable for 80% of 
LMICs, though portable sequencers ($1,000/unit) may bridge this 
gap (WHO, 2025). Retrofitting MRI suites for AI costs $500K/
hospital, yet only 5% of U.S. rural clinics have upgraded (RSNA, 
2024). Ultimately, successful integration into routine clinical 
practice will necessitate updates to established guidelines, such as 
those from the NCCN, based on robust evidence demonstrating 
improved patient outcomes and equitable access [81, 82]. NCCN’s 
2025 roadmap prioritizes AI-PRS integration but demands Level 
1 evidence from trials like BARCODE2, which includes 40% non-
White cohorts.

Discussion

In this review, we critically evaluated saliva-based PRS and AI-
enhanced MRI against traditional PSA pathways to determine their 
relative performance, cost-effectiveness, and equity implications 
[83-85]. Emerging tools like saliva PRS and AI-MRI now offer 
superior accuracy (AUC 0.85–0.92) and cost-effectiveness ($28K/
QALY), challenging PSA’s 30-year dominance [83, 86, 87]. Multi-
modal strategies (e.g., PRS + AI-MRI) could reduce biopsies by 
70% while prioritizing high-risk groups like Black men [25, 45], 
aligning with the USPSTF’s 2024 call for risk-adapted screening 
[1, 14].
    PATHOMIQ_PRAD’s integration of PRS and MRI features 
(AUC=0.95) exemplifies how AI synthesizes multi-omics data 
into actionable insights—a leap beyond PSA’s unidimensional 
approach [88]. AI-driven models now stratify patients into low/
intermediate/high-risk cohorts, enabling tailored pathways (e.g., 
active surveillance for PRS-low men vs. MRI-guided biopsy for 
PRS-high) [1, 89].
    PRS performance in Black men remains suboptimal (15% 
missed vs. 5% in White cohorts), and AI models trained on 
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predominantly European datasets risk systemic bias [44]. High 
capital costs for 3T MRI (~$3 M) and NGS labs (~$1 M) preclude 
LMIC adoption. Frugal solutions—portable sequencing, federated 
learning, and cloud-deployed AI—are urgently needed to 
democratize access.
    Trials like BARCODE1 used disparate endpoints (e.g., Gleason 
≥7 vs. CAPRA-S), complicating cross-study comparisons [25]. No 
PRS or AI-enhanced imaging trials have yet reported long-term 
cancer-specific or overall mortality endpoints, leaving the ultimate 
clinical impact unquantified [10, 11, 13].
    Multi-modal RCTs (e.g., PATHFINDER 2.0) must validate 
combined PRS + AI-MRI pathways in diverse cohorts, with 10-
year survival endpoints [25, 88]. Policy advocacy should ensure 
NCCN/EUA guidelines mandate AI-PRS tools meet FDA’s 
2024 diversity standards (≥30% non-White training data) for 
endorsement. Widespread adoption will depend on demonstrating 
consistent benefits across diverse populations and healthcare 
settings. Future research should focus on large-scale, diverse 
clinical trials to validate these integrated screening approaches 
and address existing disparities. Ongoing efforts must focus on 
expanding diverse datasets and refining algorithms to ensure 
equitable screening outcomes worldwide. Widespread adoption 
will depend on demonstrating consistent benefits across diverse 
populations and healthcare settings.
    Validating novel biomarkers and AI-enhanced imaging requires 
large-scale, diverse studies to confirm their accuracy and cost-
effectiveness compared to traditional PSA testing, while also 
addressing disparities [90-92]. Moving beyond the PSA era 
necessitates multi-modal research, regulatory action to ensure 
fairness, and funding for necessary infrastructure to enable 
equitable implementation.

Conclusion

Saliva-based PRS and AI-enhanced MRI demonstrate superior 
accuracy compared to PSA testing (AUC 0.85–0.92 vs. 0.67), 
leading to a significant reduction in unnecessary biopsies 
(40–60%) and substantial cost savings ($18–28K/QALY). While 
multi-modal approaches combining PRS and AI-MRI achieve 
high sensitivity (95%) for aggressive cancers, disparities related 
to ethnicity persist, mirroring challenges seen with traditional 
methods like PSA [83]. These findings suggest that non-invasive 
tools possess the capability to supplant PSA as the primary 
screening method, provided they undergo rigorous validation 
in diverse populations and are implemented cost-effectively to 
address issues like over-diagnosis and overtreatment associated 
with PSA [84]. Addressing Ethical and equity challenges is 
paramount for the successful adoption of these new technologies. 
Algorithmic bias can be mitigated through the use of large, 
representative datasets during AI model training and the 
development of fairness metrics to evaluate performance across 
different demographic groups. Protecting genetic privacy requires 
robust data security measures, anonymization techniques, and 
potentially legal frameworks akin to GDPR, alongside exploring 
privacy-preserving technologies like federated learning, where 
models are trained locally without centralizing sensitive genetic 
data. Overcoming cost barriers, particularly for implementation 
in low- and middle-income countries (LMICs), necessitates 
innovative funding mechanisms and technological adaptations. 
Partnerships with international health organizations, such as 
the WHO, and philanthropic foundations can provide initial 
investment. Exploring the use of more affordable, portable 
sequencing technologies for PRS analysis and developing tiered 
pricing models for AI software could improve accessibility, 
potentially supported by local manufacturing initiatives or public 
health budgets. Clinical and policy guidelines must evolve to 

prioritize the integration of AI-enhanced screening and PRS, 
particularly for populations at higher risk, such as Black men, 
who face disproportionately higher mortality rates. It is critical 
that regulatory bodies and clinical societies mandate diversity and 
representation in the training datasets used for AI algorithms to 
ensure equitable performance across all groups. Future research, 
including large-scale trials like PATHFINDER 2.0 planned for 
2025–2030, should focus on validating the long-term survival 
benefits of these precision screening strategies and ensuring 
equitable access and implementation, especially in LMIC settings. 
The era dominated by PSA is drawing to a close; the subsequent 
challenge involves ensuring that the tools replacing it learn from 
past mistakes and deliver truly equitable and effective screening 
for all men.
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