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Metabolic Supremacy Fuels Tumor Aggressiveness in Renal Cancer

Abstract 
Renal cell carcinoma, with clear cell renal carcinoma (ccRCC) being the dominant form, 
is recognized as a malignancy driven by abnormal metabolic processes, with extensive 
alterations in glucose, lipid, and amino acid pathways. The loss of the Von Hippel-Lindau 
(VHL) gene in nearly 90% of ccRCC instances results in the accumulation of hypoxia-
inducible factors (HIFs), producing a pseudo-hypoxic environment that promotes metabolic 
supremacy. This, in return, amplifies glucose uptake and directs energy production toward 
aerobic glycolysis, commonly referred to as the Warburg effect, even under conditions of good 
oxygen supply. Simultaneously, suppression of oxidative phosphorylation and heightened 
activity of the pentose phosphate pathway foster biosynthetic requirements and support an 
immunosuppressive environment. Dysregulated lipid metabolism, including elevated fatty acid 
synthesis, excessive cholesterol storage, and reduced β-oxidation, also contributes to disease 
aggressiveness. ccRCC cells also exhibit a pronounced reliance on glutamine, powering the 
tricarboxylic acid (TCA) cycle and preserving redox homeostasis, whereas altered tryptophan 
and arginine pathways facilitate immune escape. Overall, this metabolic supremacy fuels 
malignant growth, promote tumor aggressiveness and metastatic spread, and foster 
resistance to therapy. The pursuit of interventions targeting in this regard has been promising 
with HIF-2α inhibitors, such as belzutifan, showing clinical benefit. Other emerging strategies 
focus on disrupting glycolysis, lipid biogenesis, and glutamine utilization in tackling metabolic 
supremacy in renal cancer. This comprehensive review delves into ccRCC’s multifaceted 
metabolic landscape with focus on underlying pivotal molecular pathways, their implications 
in tumor aggressiveness, and the potential of innovative treatments targeting metabolic 
supremacy to limit tumor burden and improve patient outcomes in this malignancy.
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Introduction

Cancer is driven by unregulated cell growth due to continuous 
proliferation leading to malignant transformation. A key enabler 
of this pathological expansion is the reprogramming of metabolic 
pathways, supporting increased energy demands and biosynthetic 
processes [1, 2]. Kidney cancer is especially relevant on a global 
scale, and was ranked as the 14th most commonly diagnosed 
cancer in 2020, accounting for 431,288 new cases and the 15th 
deadliest cancer with 179,368 death worldwide [3]. In the United 
States, nearly 79,000 new cases of kidney cancer were reported 
in 2022 alone, underscoring its clinical significance [4]. Clear cell 
renal carcinoma (ccRCC), arising from renal tubular epithelial 
cells, representing about 75% of all kidney cancer diagnoses [5, 
6]. Although surgical procedures have advanced, ccRCC remains 
challenging to treat due to its aggressive behavior and metastatic 
potential, often necessitating adjunct therapies like targeted agents, 
immunotherapy combinations, or dual immunotherapy [7]. While 
these modalities have extended survival, their effectiveness is 
frequently limited by adverse effects and variability in patient 
response [8, 9].
    First identified several decades ago, metabolic reprogramming 
has emerged as a primary focal point for new cancer treatments. It 
enables tumors to adapt biochemical pathways to satisfy escalated 
energy requirements and biosynthesis, thus presenting novel targets 
for intervention [10]. Early studies characterized the heightened 
glycolysis in cancer cells, known as the “Warburg effect”, as a 
reflection of inefficient energy generation [11]. However, modern 
evidence implicates oncogenic mutations in driving widespread 
metabolic alterations, influencing glucose uptake, lipid synthesis, 
and mitochondrial oxidative phosphorylation to advance 
tumorigenesis [12]. Even when oxygen is plentiful, cancer cells 
deplete local nutrient stores by favoring glycolysis over oxidative 
phosphorylation and establish an immunosuppressive environment 
that impairs T-cell function, thereby promoting tumor progression 
[13]. These metabolic abnormalities are particularly pronounced 
in ccRCC, with genetic disruptions triggering shifts in glucose 
metabolism, increased glutamine reliance, and mitochondrial 
dysfunction [14, 15]. The Warburg effect, exemplified by the 
bias toward rapid ATP generation while also producing building 
blocks vital for cellular proliferation, is a hallmark of ccRCC 
[16]. Hence, recognizing the relationship between metabolic 
dysregulation and ccRCC pathogenesis is essential for designing 
more effective treatments. Here, we explore the molecular 
mechanisms behind metabolic supremacy in ccRCC, focusing on 
dysfunctional hypoxic signaling, aberrant glucose metabolism, 
Warburg effect, dysregulated amino acid metabolism and elevated 
lipid metabolism as key culprits behind tumor aggressiveness. 
We also discuss the pharmacological interventions targeting these 
pathways, including agents that inhibit glycolysis, glutaminolysis, 
and fatty acid oxidation. By mapping the metabolic framework of 
ccRCC, this review aims to guide future research and therapeutic 
innovations intended to overcome tumor aggressive in renal 
cancer, critical to limit tumor burden and enhance patient survival 
in this malignancy.

Hypoxia signaling induces metabolic supremacy in renal 
cancer

ccRCC is often associated with alterations in the Von Hippel-
Lindau (VHL) gene, which is associated with metabolic 
supremacy in up to 90% of cases [12]. Located on chromosome 
3’s short arm, VHL encodes the tumor suppressor protein pVHL 
[17]. Under normal conditions, pVHL facilitates the ubiquitination 
of proline-rich residues in the oxygen-dependent degradation 
domains of hypoxia-inducible factors (HIFs), directing them 

toward proteasomal degradation [18, 19]. HIFs function as 
transcriptional regulators that enable cellular adaptation to low-
oxygen environments [20]. Among the HIF isoforms, HIF-
1α is predominant in most tissues and cells, with its stability 
influenced by both oxygen availability and metabolic status [21, 
22]. By contrast, under pathological hypoxia, HIF-2α resists 
degradation, forms a complex with HIF-1β, also referred to as the 
aromatic hydrocarbon receptor nuclear transporter (ARNT), and 
translocates into the nucleus to initiate gene transcription (Figure 
1) [23]. In ccRCC, VHL mutations lead to the accumulation of 
HIF-2α, creating a “pseudo-hypoxic” state [24]. This condition 
triggers metabolic reprogramming that fuels angiogenesis, 
epithelial-mesenchymal transition, tumor invasion, and metastasis 
[25]. The HIF pathway elevates the expression of key enzymes and 
transporters involved in glucose uptake and glycolysis,  glucose 
transporter type 1 (GLUT1), phosphoglycerate kinase (PGK), 
lactate dehydrogenase (LDHA), pyruvate dehydrogenase kinase 
(PDK1), and hexokinase (HK) [26], while concurrently suppressing 
oxidative phosphorylation and the tricarboxylic acid (TCA) 
cycle [27]. Furthermore, ccRCC exhibits additional mutations in 
components of the PI3K-AKT-mTOR signaling cascade, including 
PTEN, TSC1/2, and PIK3CA [28, 29]. The proteins produced 
by TSC1 and TSC2 ordinarily act as an inhibitory complex for 
mTORC1 [30]. Once mTORC1 is activated, it suppresses the tumor 
suppressor 4EBP1, which boosts the expression of both HIF-1 
and HIF-2, thereby amplifying the metabolic reprogramming that 
drives tumor development [31, 32]. Hence, the pseudo-hypoxia 
driven metabolic supremacy underscores the aggressive character 
of ccRCC and illustrates how genetic mutations and metabolic 
shifts intersect to propel tumor progression (Figure 1).

Aberrant glucose metabolism drives metabolic supremacy-
driven tumor aggressiveness in renal cancer

Glucose metabolism is integral to cellular energy production, and 
its disruption is a key driver in the progression of renal cancer, 
particularly ccRCC. In ccRCC, HIFs orchestrate a metabolic 
reprogramming that boosts tumor aggressiveness. HIF-1α not 
only promotes glucose uptake by stimulating GLUT transporter 
proteins, but it also suppresses mitochondrial respiration through 
the regulation of microRNAs such as miR-210 [33]. Conversely, 
HIF-2α governs genes linked to glycolysis and interacts with 
pivotal oncogenes like MYC and P53, while upregulating cell cycle 
regulators [34]. This broad spectrum of HIF-2α activity is central 
to ccRCC pathogenesis [35]. Moreover, the advent of selective 
HIF-2α inhibitors has shown encouraging outcomes in ccRCC 
xenograft models, suggesting potential clinical utility [36]. HIF-
1α drives the preference for aerobic glycolysis which is a defining 
feature of ccRCC. It is evident from increased lactate production 
coupled with lower pyruvate flux into mitochondria, leading 
to suppressed TCA cycle activity and reduced ATP generation 
[37]. HIF-1α amplifies these changes by inhibiting pyruvate 
dehydrogenase, which prevents pyruvate from converting into 
acetyl-CoA and drives lactate accumulation [38]. HIF-1α also 
promote the expression of key glycolytic enzymes, including 
HK, neuron-specific enolase (NSE), PGK, and pyruvate kinase 
(PK), thereby reinforcing the Warburg effect in ccRCC [39, 40]. 
Among these enzymes, HK2 is of particular importance; its 
overexpression correlates with advanced tumor progression, lymph 
node metastasis, and poorer survival in renal cancer patients. 
HK2 also stands out as an independent risk factor for renal cell 
carcinoma, with studies linking its elevated expression to immune 
cell infiltration that impacts tumor progression and prognosis [41].
    Glycolysis involves breaking glucose down into pyruvate 
[42]. Pyruvate enters the TCA cycle under aerobic conditions, 
supporting ATP generation along with the production of reduced 
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nicotinamide adenine dinucleotide (NADH) and reduced flavin 
adenine dinucleotide (FADH2) [43]. Under anaerobic conditions, 
pyruvate is converted into lactate by fermentation, yielding ATP 
[44]. In ccRCC, another essential metabolic pathway is the pentose 
phosphate pathway, which generates glucose for lipid metabolism 
and nucleic acid synthesis by producing reduced nicotinamide 
adenine dinucleotide phosphate (NADPH) and ribose 5-phosphate 
[45]. The pentose phosphate pathway is significantly heightened 
in ccRCC, producing abundant NADPH necessary for preserving 
redox balance and safeguarding cancer cells from reactive oxygen 
species (ROS) damage [46]. This metabolic adjustment helps 
tumor cells mitigate oxidative stress and limit ROS-induced harm 
[47]. Additionally, the pentose phosphate pathway furnishes the 
five-carbon sugars required for nucleotide production, meeting 
the heightened demands of rapidly proliferating tumor cells [48]. 
Significant modifications also occur within the TCA cycle in 
ccRCC, contributing to its distinctive metabolic profile. Enzymes 
essential for refilling metabolic intermediates from other pathways 
are frequently reduced [49]. Of note, citrate and cis-aconitate are 
found in higher concentrations in ccRCC’s TCA cycle, whereas 

malate and fumarate are markedly decreased [15]. The drop in 
fumarate and malate is largely tied to the inhibition of succinate 
dehydrogenase (SDH), a mechanism that continuously diminishes 
fumarate and, by extension, malate [49]. This observation 
contradicts the typical notion of tumor tissues maintaining 
abundant fumarate. Overall, the abnormal regulation of glucose 
metabolism, primarily steered by HIF-1α and HIF-2α, plays a 
pivotal role in ccRCC aggressiveness. Collectively, overexpression 
of glycolytic enzymes, and alterations in the TCA cycle and 
pentose phosphate pathway grant ccRCC a metabolic advantage 
that propels its progression (Figure 2).

Warburg effect fosters metabolic supremacy-driven tumor 
aggressiveness in renal cancer

The Warburg effect describes cancer cells favoring glycolysis over 
mitochondrial respiration even with sufficient oxygen, resulting 
in limited ATP production and elevated lactate levels [12]. 
Recent research underscores the Warburg effect as a key driver of 
tumor growth in ccRCC. In this regard, ccRCC exhibits marked 

Figure 1. Hypoxia signaling induces metabolic supremacy in renal cancer. In response to poor oxygen supply in growing tumors in 

ccRCC, hypoxia signaling, primarily HIF-2α mediated one, gets activated leading to activation of plethora of genes involved in metabolic 

reprogramming. This results in onset of angiogenesis, tumor aggressiveness and progression, and metastatic spread of the disease.
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metabolic reprogramming, particularly in the TCA cycle. Such 
changes include impaired pyruvate transport into mitochondria 
and dysfunction of enzymes like fumarate hydratase (FH) and 
SDH, leading to metabolic imbalances [50]. In addition, citrate and 
aconitate levels rise while succinate and malic acid levels fall [49], 
and the downregulation of enzymes that normally replenish the 
TCA cycle compounds these disruptions [50]. As a result, oxidative 
phosphorylation, the primary ATP-producing process, is severely 
compromised in ccRCC [49]. A hallmark of ccRCC is mutation 
of the von Hippel-Lindau (VHL) gene, which stabilizes HIF-1α. 
This stabilization alters cellular metabolism by impeding glucose 
oxidation, reducing mitochondrial pyruvate uptake, and lowering 
the efficiency of the electron transport chain [51]. Oxidative 
phosphorylation impairment is further aggravated by the reduced 
expression of complex V and the downregulation of peroxisome 
proliferator-activated receptor gamma coactivator-1α (PGC-1α), 
a key regulator of mitochondrial biogenesis and respiration [52]. 
Decreased PGC-1α delays mitochondrial respiration, lowers the 
expression of mitochondrial transcription factor A (TFAM), and 
correlates with worse clinical outcomes in ccRCC [27]. Besides 
HIF-1α, HIF-2α also inf luences oxidative phosphorylation 
activity in ccRCC by inducing antioxidant gene expression, 
thereby minimizing ROS accumulation, preventing DNA 
damage, and enhancing tumor cell survival [53]. These oxidative 
phosphorylation-related metabolic changes profoundly affect 
both tumor progression and treatment strategies, with selective 
HIF-2α inhibitors showing notable therapeutic success in ccRCC 
[54]. In ccRCC, elevated glycolysis and declining oxygen levels 
in the tumor microenvironment raise the NADH/NAD⁺ ratio, 
disrupting redox balance and promoting ROS production [55]. 
Cancer cells counteract increased ROS by employing antioxidant 
defenses such as the thioredoxin and glutathione pathways [10]. 
Moreover, higher ROS levels stabilize nuclear factor erythroid 
2-like 2 (NRF2), a critical antioxidant response regulator. This 
occurs when KEAP1, normally responsible for targeting NRF2 
for proteasomal degradation, becomes oxidized and can no longer 
carry out its negative regulatory function [55]. Since excessive 
ROS can overwhelm a tumor cell’s antioxidant defenses, these 
cells often bolster these defense mechanisms to ensure survival 
[56]. In ccRCC, HIF-2α supports these processes by inducing 
antioxidant genes that further lower ROS levels, reduce DNA 
damage, and enhance tumor cell viability [53]. Overall, metabolic 
supremacy, particularly the interplay between disrupted oxidative 
phosphorylation and glycolysis, is key to tumor aggressiveness in 
renal cancer (Figure 2).

Dysregulated Amino acid metabolism promotes metabolic 
supremacy-driven tumor aggressiveness in renal cancer

Glutamine plays a key role in sustaining cellular redox homeostasis 
in normal cells by serving as a precursor for both α-ketoglutarate 
(α-KG) and glutathione, which are central to maintaining 
intracellular redox balance and facilitating amino acid synthesis 
[57]. It is transported into cells through specific transporter 
proteins such as Solute Carrier Family 1 Member 5 (SLC1A5) 
[58], after which the enzyme glutaminase (GLS) converts 
glutamine to glutamate [59]. Besides contributing to protein 
synthesis, glutamine underpins several metabolic and biosynthetic 
processes, including nucleotide and hexosamine production and 
asparagine formation, and is vital for managing oxidative stress 
and regulating other essential amino acids [60]. GLS activity is 
directly linked to both cell proliferation and cancer progression, 
making it an attractive target for anticancer strategies; indeed, 
inhibiting GLS expression or activity has been shown to restrict 
tumor growth [61]. In ccRCC, metabolic reprogramming heightens 
reliance on glutamine to power pathways that drive accelerated 

tumor growth. Meeting the elevated metabolic demands of these 
aggressive cancer cells depends on glutamine [62]. Furthermore, 
an overabundance of glutamic acid disrupts cystine uptake, 
generating imbalances in ROS and impairing T cell functionality, 
thus promoting an immunosuppressive tumor microenvironment 
(Figure 2) [13]. A hallmark of ccRCC is the increased expression 
of SLC7A5, an amino acid transporter regulated by HIF-2α, which 
enhances glutamine uptake [63]. Once inside the cell, glutamine is 
first converted to glutamate by GLS and then metabolized to α-KG 
through the action of glutamate dehydrogenase (GDH), providing 
crucial carbon for the TCA cycle and supporting cell survival [64]. 
Glutamate can also be channeled into reductive carboxylation to 
yield isocitrate, which is then used to produce acetyl coenzyme A 
for lipid biosynthesis [57]. The elevated glutamine content found 
in ccRCC correlates with increased glutamate production, a key 
mechanism for neutralizing ROS [65]. In addition, glutamine 
drives glycolysis, bolsters proliferation and immortalization, 
and hinders apoptosis by suppressing thioredoxin-interacting 
protein, further underscoring the therapeutic relevance of targeting 
glutamine metabolism in ccRCC.
    Tryptophan also critically modulates T cell-mediated immune 
responses to tumors. However, its excessive oxidation through 
the kynurenine pathway triggers T cell dysfunction and allows 
tumor cells to evade immune detection [66]. Metabolites in 
the kynurenine pathway actively suppress T cell activation, 
exacerbating immune escape. Within tumor-draining lymph nodes, 
elevated indoleamine 2,3-dioxygenase (IDO) activity creates an 
immunosuppressive milieu by prompting dendritic cells to inhibit 
T cells, thereby interfering with antigen recognition and immune 
function [67]. In ccRCC, immune checkpoint dysregulation 
is associated with increased IDO expression, which depletes 
tryptophan and activates the kynurenine pathway, ultimately 
supporting tumor survival by countering interferon-alpha (IFN-α) 
therapy and fostering immune suppression (Figure 2) [68, 69]. 
In addition, IDO overexpression has been closely tied to cancer 
metastasis: research in lung cancer cells reveals that higher IDO 
levels improve cell viability, whereas IDO inhibition diminishes it. 
In mouse models, administering lung cancer cells overexpressing 
IDO leads to more frequent metastases in the brain, liver, and 
bone [70]. These observations pinpoint IDO as a promising 
therapeutic target in ccRCC and other malignancies, warranting 
further exploration. Arginine metabolism is similarly disrupted 
in ccRCC, involving abnormalities in arginine transporters and 
metabolic enzymes, including arginase and arginine succinate 
synthase 1 (ASS1). Tumor cells often display reduced or missing 
ASS1 expression, an enzyme needed to convert citrulline into 
arginine, forcing cancer cells to rely on external arginine. 
Proteomic analyses of ccRCC biopsies support this dependency. 
Targeting arginine metabolism thus offers a potential therapeutic 
approach, as depriving tumor cells of this vital nutrient can 
suppress cancer progression. Research has shown that eliminating 
arginine selectively induces cell toxicity in ASS1-deficient tumors 
[71]. In summary, disrupted amino acid metabolism contribute to 
metabolic supremacy and tumor aggressiveness in renal cancer 
(Figure 2).

Elevated lipid metabolism fuels metabolic supremacy-driven 
tumor aggressiveness in renal cancer

In ccRCC, disruptions in lipid metabolism frequently occur, 
markedly inf luencing the tumor’s aggressive characteristics 
(Figure 2) [72]. Amplified lipid synthesis and storage, along 
with reduced lipid oxidation and utilization mark the metabolic 
supremacy, leading to accumulation of substantial levels of 
cholesterol, fatty acids, and triglycerides [73, 74], which support 
membrane formation and cell proliferation while limiting fatty 
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acid β-oxidation. Driven by increased expression of lipoprotein 
receptors such as very low-density lipoprotein receptor (VLDL-R) 
and scavenger receptor B1 (SR-B1), enhanced cholesterol uptake 
is a major contributor to this imbalance [75, 76]. Moreover, HIF-
2α escalates lipid storage by activating hypoxia-induced lipid 
droplet-associated protein (HILPDA), leading to the selective 
enrichment of polyunsaturated lipids [77]. Overexpression of 
fatty acid synthase (FAS) represent another hallmark of ccRCC, 
leading to elevated fatty acid biosynthesis [39]. However, in 
contrast to other malignancies, ccRCC exhibits diminished fatty 
acid oxidation, primarily due to decreased levels of carnitine 
palmitoyltransferase 1A (CPT1A), an enzyme essential for fatty 
acid degradation [78]. In addition, ccRCC cells display higher 
amounts of fatty acid desaturase 1 (FADS1), which fosters 
polyunsaturated fatty acid (PUFA) production [72]. These PUFAs 
are crucial substrates for lipid peroxidation, a defining feature 
of ferroptosis. Research points to acyl-CoA synthetase long-
chain family member 4 (ACSL4) as a key regulator of ferroptotic 

sensitivity [79]. Once ACSL4 is active, lysophosphatidylcholine 
acyltransferase 3 (LPCAT3) facilitates ferroptotic signaling by 
integrating acyl groups into phospholipids like phosphatidylcholine 
and phosphatidylethanolamine. Nevertheless, ferroptosis can 
also arise through ACSL4-independent pathways, and although 
inducing ferroptosis is being investigated as a potential cancer 
therapy, its exact function in tumor biology remains a subject of 
ongoing exploration [80]. Lipid metabolism is closely interwoven 
with glucose metabolism. Enzymes such as glycerol kinase and 
α-phosphoglycerol dehydrogenase link glycerol and glucose 
pathways, yielding dihydroxyacetone phosphate [45]. In conditions 
where glucose is abundant, acetyl coenzyme A, derived from 
glucose metabolism, together with NADPH and protons from the 
pentose phosphate pathway, is converted into fatty acids via FAS. 
Metabolism of phospholipids and ketone bodies also contributes 
significantly to lipid metabolic processes [81]. Beyond their role as 
energy sources, lipids function as signaling molecules that regulate 
cell growth and proliferation [82]. Given its profound impact on 

Figure 2. Metabolic supremacy drives tumor aggressiveness in renal cancer. Metabolic supremacy marked by elevated glucose, fatty acid, 

glutamine and tryptophan metabolism drives tumor aggressiveness in renal cancer. Glucose metabolism via glycolysis rather than oxidative 

phosphorylation (Warburg effect) fuels tumor proliferation and progression. Increased fatty acid and cholesterol uptake but reduced fatty acid 

oxidation leads to lipid accumulation which also serve as fuel for cancer progression. Meanwhile, enhanced glutamine metabolism counteracts 

oxidative stress via upregulating glutathione levels. Tumor cells limit arginine metabolism and rely on external arginine sources for rapid 

growth. Lastly, elevated tryptophan metabolism via IDO contribute to immune evasion. 
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ccRCC progression, lipid metabolism is increasingly regarded as a 
promising target for therapeutic intervention.

Targeting metabolic supremacy in renal cancer

Renal cancer is often characterized by genetic disruptions that 
create a hypoxic environment, predominantly through mutations 
in the VHL gene [83]. These mutations lead to an accumulation 
of HIF-α, which in turn stimulates the production of vascular 
endothelial growth factors (VEGFs) [84]. Historically, therapies for 
ccRCC have focused on antiangiogenic measures, such as VEGF 
receptor inhibitors or agents directly targeting VEGF, including 
sunitinib [85]. However, these approaches have demonstrated 
limited clinical benefits and are frequently accompanied by 
adverse effects. Because ccRCC involves significant metabolic 
reprogramming, attention has turned toward enzymes and 
proteins that modulate these altered pathways, with the goal of 
selectively eradicating tumor cells while sparing normal tissue 
[86]. One key aspect of this shift is the heightened reliance of 
ccRCC on glycolysis. Limiting glycolysis has been proposed as a 
viable therapeutic intervention, in line with strategies employed 
in hepatocellular carcinoma [87]. Although early clinical findings 
indicate that restricting glycolysis could curb cancer progression, 
large-scale studies are still needed to verify its clinical value 
[88]. Delving deeper into the metabolic deviations characterizing 
ccRCC may thus lead to more effective and less toxic treatments 
for patients [89].
    A particularly auspicious tactic targets the HIF-2α signaling 
pathway, a major downstream effector of the frequently mutated 
VHL tumor suppressor gene in ccRCC [90]. HIF-2α governs 
critical functions such as angiogenesis, cell proliferation, and 
metabolism, each substantially influencing tumor expansion 
and metastasis. Formerly deemed “undruggable” [91], HIF-2α 
has recently been shown to possess a structural vulnerability in 
its PAS-B domain. This discovery spurred the development of 
initial HIF-2α inhibitors like PT2399 and PT2385, which alter 
the PAS-B domain’s shape to block the formation of the HIF-2α/
HIF-1β complex [92]. PT2399 has even surpassed sunitinib in 
certain models and remained effective against sunitinib-resistant 
tumors, although prolonged therapy can induce resistance via 
mutations in the binding site or HIF-1β [93], and it does not fully 
suppress all HIF-2α target genes. PT2385, meanwhile, showed 
a favorable safety profile and minimal toxicity in phase I trials, 
with a complete response observed in 2% of patients, partial 
responses in 12%, and stable disease in 52% [94]. In response 
to the shortcomings of these first-generation inhibitors, second-
generation HIF-2α antagonists have been created, such as PT2977 
(also known as MK-6482 or belzutifan) [95]. PT2977 targets a 
region adjacent to the PAS-B domain, triggering a conformational 
change that disrupts gene interactions. It also boasts low 
lipophilicity, high oral bioavailability, and an encouraging safety 
profile. In a phase II trial, a daily dose of 120 mg resulted in a 49% 
objective response rate among ccRCC patients, with primarily mild 
and manageable side effects [96, 97]. Consequently, newer HIF-
2α inhibitors, particularly PT2977, have emerged as promising 
targeted therapeutics for ccRCC, offering improved potency and 
tolerability compared to older treatments.
    Cancer cells also exploit glutamine metabolism to support 
energy generation, redox balance, and the synthesis of essential 
macromolecules. In ccRCC, GLS replenishes the TCA cycle and 
modestly drives cell proliferation [12]. The GLS inhibitor CB-839 
has demonstrated strong anticancer activity in preclinical models. 
In animal studies, combining CB-839 with Everolimus, an mTOR 
inhibitor commonly used in ccRCC, enhanced antitumor efficacy. 
Clinical exploration of this combination, however, remains sparse, 
emphasizing the need for more extensive safety and effectiveness 

data [98, 99]. Furthermore, some cancers exhibit elevated arginine 
dependence due to deficient ASS1, thereby increasing their reliance 
on external arginine [100]. Since arginine is pivotal for nitric oxide 
production and protein biosynthesis, reducing circulating arginine 
through ADI-PEG20 (a PEG-conjugated arginine deaminase) 
has been proposed as a strategy to constrain tumor growth in 
ccRCC. That said, the re-expression of ASS1 may diminish 
its impact [12]. Clinical data point to good tolerance of ADI-
PEG20 and suggest it may overcome drug resistance in cancers 
that rely heavily on arginine [101]. Additionally, encouraging 
results have been reported for ADI-PEG20 in non-small cell 
lung cancer, acute myeloid leukemia, and uveal melanoma [102, 
103]. Further research will be crucial for refining combination 
regimens and determining how best to avert resistance. The 
enzyme IDO degrades tryptophan via the kynurenine pathway, 
contributing to an immunosuppressive tumor environment by 
lowering tryptophan levels, thereby impeding T-cell function and 
promoting metastasis [69]. IDO inhibition has thus become an 
appealing immunotherapeutic avenue. The selective IDO inhibitor 
Epacadostat was found in preclinical studies to enhance the 
response of tumor-specific T cells [104], though clinical outcomes 
have been mixed, showing toxicity issues and moderate efficacy 
at best. Early-phase trials combining Epacadostat with the PD-1 
inhibitor pembrolizumab showed limited but notable antitumor 
responses in advanced solid tumors; however, more research is 
needed to fully establish its clinical benefit [105]. Meanwhile, 
Navoximod has displayed acceptable tolerability and moderate 
bioavailability at 800 mg twice daily. Although Navoximod 
monotherapy showed limited impact, pairing it with Atezolizumab 
produced encouraging safety profiles and measurable antitumor 
activity, with ongoing trials investigating its broader therapeutic 
potential [106-108]. Additional IDO inhibitors, such as KHK2455, 
LY3381916, and MK-7162, are in clinical studies to evaluate their 
safety and efficacy [67]. Moving forward, it will be essential 
to refine combination therapies and dosing strategies for IDO-
targeted treatments. When considered alongside approaches 
like glycolysis inhibition, HIF-2α antagonism, and interventions 
involving lipid, glutamine, and arginine pathways, the growing 
range of metabolic therapies holds real promise for improving 
outcomes in ccRCC.
    Genetic alterations in ccRCC also impact lipid metabolism, 
which is integral to tumor proliferation. FAS overexpression, a 
common finding, elevates intracellular fatty acid concentrations, 
fueling cancer growth and affecting post-t ranslational 
modifications. Fatty acids are critical for both energy production 
and the maintenance of redox balance [109]. These insights have 
led researchers to propose inhibiting fatty acid synthesis as a 
therapeutic approach, supported by studies correlating greater FAS 
expression with higher tumor aggressiveness and worse clinical 
outcomes [110]. Preclinical evaluations indicate that the FAS 
inhibitor C75 can limit ccRCC cell proliferation and aggressiveness 
[111]. Another agent, TVB-2640, has shown promise in clinical 
contexts. A phase I investigation reported reduced fatty acid 
production in patients with non-small cell lung cancer, and follow-
up trials in breast and ovarian cancers confirmed its efficacy and 
generally mild dermatological and ocular side effects [112]. TVB-
2640 is currently undergoing evaluation in numerous cancer 
trials, including studies focused on ccRCC, suggesting that FAS 
inhibitors could eventually play a valuable role in treating this 
disease.

Conclusion and future prospect

Renal cancer is marked by a striking reconfiguration of its 
metabolic processes, fundamentally shifting how these tumor 
cells manage energy production and maintain redox balance. 
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Hypoxia-driven metabolic supremacy accompanied by metabolic 
shift from oxidative phosphorylation to glycolysis propels rapid 
tumor proliferation and aggressiveness. At the same time, the 
pentose phosphate pathway undergoes upregulation, boosting 
the generation of NADPH, which provides critical protection 
against ROS and helps safeguard nucleotides from potential 
damage. Excess lactate in the tumor environment further promotes 
an immunosuppressive milieu, thereby advancing tumor cell 
migration and invasion. ccRCC cells also exhibit significant shifts 
in lipid metabolism, with elevated lipid synthesis and utilization 
coinciding with the downregulation of lipid oxidation. ccRCC 
cells maintain high glutamine uptake despite such metabolic 
alterations, which underpins fatty acid production and serves as a 
buffer against oxidative stress by mitigating ROS. Taken together, 
these wide-ranging metabolic changes underscore a complex 
biochemical supremacy in ccRCC, emphasizing the necessity for 
continued research to clarify the nuances of these pathways and 
identify viable therapeutic targets. In view of the limited success 
rates of current treatments, tailored approaches that selectively 
disrupt vital metabolic pathways in cancer cells by leveraging the 
unique metabolic characteristics of ccRCC, open new possibilities 
for drug development. The potential benefits of intervening in 
tumor metabolism likely surpass the drawbacks and challenges 
associated with conventional therapies such as, potential off-target 
effects on other rapidly dividing cells and variability arising from 
distinct mutation profiles. For instance, metabolic inhibitors could 
ultimately present a safer option than standard anti-angiogenic 
therapies, which are frequently linked to cardiovascular side 
effects. Moreover, advances in metabolomics continue to reveal 
novel metabolic targets, paving the way for precision therapies 
specifically suited to ccRCC. As research progresses, it is 
anticipated that new treatments aimed at metabolic supremacy 
will broaden the range of viable options for patients with ccRCC, 
offering both improved outcomes and a more personalized 
approach to care.
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