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Targeting CTLA-4 in Cancer: Biological Insights with a Focus on Renal Cell Carcinoma

Abstract 
Renal cell carcinoma (RCC) is a complex group of malignant tumors characterized by 
immunosuppression and high invasiveness. In the majority of patients with advanced renal 
cell carcinoma, treatment fails to achieve a complete cure post-treatment. Efforts are needed 
to develop new therapeutics to improve the outcome of renal cell carcinoma. The "immune 
checkpoint" of T cells has attracted much attention in tumor immunotherapy. It is widely 
accepted that suppressor T cell immune checkpoints promote tumor immune escape through 
negative immune regulatory signals (cytotoxic T lymphocyte associated antigen 4 [CTLA-
4], programmed cell death 1 [PD-1], B7-H3, and B7-H4, among others). The current data 
suggest that the PD-1 and CTLA-4 receptors inhibit the T cell receptor and its proliferation. 
Blockade of the PD-I/PD-L1 and/or CTLA-4/CD 28 pathways has shown favorable tumor 
outcomes in clinical trials in advance-stage renal cancer. This article reviews the role of 
CTLA-4/CD 28 pathway in renal cell carcinoma. Here we discuss the basics of the CTLA-4 
pathway from a physiological perspective and evaluate the results of clinical studies of CTLA-
4 alone and in combination with PD-1/PD-L1 blockers to support future studies of combination 
immunotherapy.
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Introduction

Kidney cancer is one of the 10 most common cancers in men 
and women, accounting for 5% and 3% of all malignancies [1], 
exhibiting heterogeneous and complex phenotypes [2]. Among 
them, renal cell carcinoma (RCC) is the most common form of 
renal cancer, accounting for 85% of cases with higher males to 
female ratio (1.7:1) [3, 4]. At the time of diagnosis, an estimated 
25% of patients will have metastatic disease. Approximately 30% 
of patients who undergo nephrectomy will still develop metastatic 
disease [5]. Based on data from 2008 to 2014, the 5-year survival 
rate for localized tumors is 93%, but for metastatic kidney cancer 
it is 12%. Observational studies have found that the median 
survival of patients treated with targeted therapies improves to 
approximately 40 months, with progression-free survival (PFS) as 
high as 27 months for some therapies, leading to the widespread 
use of these agents in RCC [6]. However, the 5-year survival rate 
of patients with metastatic disease is still very low, especially in 
patients with poor prognostic factors [7]. Therefore, new therapies 
are needed to improve the prognosis of patients with advanced 
tumors.
  The ability to evade immune surveillance and programmed cell 
death is a major mechanism for evasion of cancer [8]. Various 
tumors may express biomarkers that prevent the host from 
generating an immune response [9]. In fact, this is essential for 
that host's regulation of cell proliferation to prevent damage to 
the nuclear content. It is well known that cell division halts after 
sustained cell damage to allow repair. When repair is not possible, 
cell death is induced to prevent the development of defective 
cell. The rare cases of spontaneous response of RCC provide 
information that the immune system may be able to suppress 
RCC through antitumor immunity [10]. Immunotherapy is an 
increasingly popular and researched treatment that uses the body's 
own immune system to fight metastatic cancer [9]. Immune 
checkpoint inhibitors (ICI) upregulate the immune response 
by blocking programmed cell death protein 1 (PD-1) receptors, 
ligands of PD-1, or cytotoxic T lymphocyte-associated protein 
4 T cells, leading to a new era of immunotherapy [11]. CTLA-4 
and PD-1 are inhibitory receptors with molecular significance. A 
large number of these agents have been developed, studied, and 
are currently marketed as effective therapies for the treatment 
of mRCC and many other malignancies. This review describes 
CTLA-4 in detail.

Biology of Immune Checkpoint Inhibition

Immune Checkpoint Inhibition (ICI) is a cancer immunotherapy 
that enhances the anticancer immune response by targeting 
immune receptors on the surface of T lymphocytes [12]. 
Considered a novel option for cancer treatment, these agents 
have a low toxicity profile in some cases and can achieve durable 
results [13]. In contrast to traditional therapeutic strategies, ICI 
acts against tumor cells by reactivating the host immune system 
[13]. Immune checkpoints maintain a balance between pro-
inflammatory and anti-inflammatory signals under steady-state 
conditions [13].
  T cell activation is a complex process involving multiple 
stimulatory and inhibitory receptors. The initial step requires 
antigen-specific T cells to recognize MHC peptides, but also 
requires costimulatory signals from the interaction between 
membrane proteins on antigen presenting cells, including B7 
family members CD 80 (also known as B7-1) and CD 86 (also 
known as B7-2), and CD28 on T cells [14-16]. A variety of 
signals influence the activation status of T cells, but cytotoxic 
T lymphocyte antigen 4 (CTLA-4), programmed cell death 1 
(PD-1), and programmed cell death 1 ligand 1 (PD-L1) are the 

only immune checkpoints that currently have routine clinical 
application in patients with RCC [17, 18]. In addition, the biological 
and clinical significance of several other B7 family members is 
only now being elucidated [17].

Cytotoxic T Lymphocyte Antigen 4 (CTLA-4) biology

CTLA-4 (cluster of differentiation 152, CD152), also known as 
CD152, is typically located in the cytoplasm of CD4+ and CD8+ 
T cells, is induced on the cell surface, and binds CD80 and CD86 
with higher affinity than CD28 [19, 20]. It was discovered in 
1987 by Brunet et al [21] by screening a cDNA library derived 
from mouse cytolytic T cells. CTLA-4 expression is usually 
noted upon T cell activation, but regulatory T cells (Tregs) 
constitutively express CTLA-4 due to the high levels of the 
forkhead transcription factor FoxP3 [21-23]. CTLA-4 acts mainly 
by competing with CD28 receptor for binding to B7 ligands (B7-
1/CD80 and B7-2/CD86) on antigen presenting cells (APC) [24]. 
During T cell activation, the CD28 receptor on the T cell binds 
to the B7 ligand on the APC and provides the necessary second 
activation signal for the T cell. However, the CTLA-4 receptor 
binds to B7 ligands with higher affinity and lower surface density, 
thus outperforming the CD28 receptor in binding to the B7 
ligands. Thus, the absence of a second activation signal in the 
presence of the CTLA-4 receptor results in T cell anergy [20, 
25, 26]. In addition, CTLA-4 receptor has also been shown to 
sequester B7 ligand from the APC surface and result in significant 
depletion of its surface ligand. Interestingly, due to its structural 
similarity to CD28 and its expression on activated T cells, CTLA-
4 was considered to be a positive regulator of T cells in the first 
days of its discovery (Figure 1).
  The fact that CTLA-4 acts on the cell surface suggests a 
strategy to enhance T cell immunity by using CTLA-4 inhibitory 
antibodies. Allison et al. has demonstrated the negative effects 
of CTLA-4 and established the antagonistic effects of CTLA-4 
and CD28 on T cell stimulation. The study showed in detail that 
binding of CTLA-4 to B7 ligand abolished IL-2 secretion by T 
cells and T cell proliferation following TCR activation. Blocking 
CTLA-4 with anti-CTLA-4 antibodies leads to rejection of pre-
established tumors, and mice lacking the Ctla4 gene (Ctla4-/-
mice) develop severe lymphoproliferative and lethal autoimmune 
phenotypes [27-29]. Further studies have shown that CTLA-4 is 
involved in activating an intrinsic signaling cascade in T cells. It 
has been reported [30-34] that CTLA-4 activation inhibits IL-2 
production and T cell proliferation and induces cell cycle arrest 
through interaction with pathways regulating cell survival and 
proliferation, including PI3K, NF-κB, and MAPK pathways. In 
addition, the interaction of anti-CTLA-4 monoclonal antibodies 
with CTLA-4 may activate antibody-dependent cell-mediated 
cytotoxicity (ADCC) or complement-mediated lysis. We found that 
complement activation was lower in patients receiving ipilimumab 
(IgG1 antibody) than in patients receiving tremelimumab (IgG2 
antibody) [35, 36]. Ipilimumab isotype IgG1 has a high affinity for 
FcγRIIIa, the Fc receptor mediating ADCC. More interestingly, 
patients with polymorphisms in this receptor were more responsive 
to ipilimumab [37].
  Multiple signals, both stimulatory and inhibitory, modulate 
the activation of T cells by tumour cells or antigen-presenting 
cells. Tumour peptides are presented by major histocompatibility 
complex (MHC) glycoproteins and recognized by antigen-specific 
T cells. CTLA-4 acts as a negative regulator of T cell activation 
by binding to B7 ligands CD80 and CD86 expressed on antigen-
presenting cells, thereby preventing the co-stimulatory interaction 
between CD28 and the B7 ligands. Ipilimumab binds to CTLA-4 
and blocks the inhibitory signaling of the CTLA-4: B7interaction. 
PD-1 acts as a negative regulator of T cell activity predominantly 
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by binding to PD-L1 on either tumor cells or antigen-presenting 
cells, leading to downstream signaling that inhibits anti-tumor T 
cell responses. 

CTLA-4 expression in RCC

RCC is essentially a metabolic disease characterized by 
reprogramming of energy metabolism, and many of the genes 
mutated in RCC encode proteins that play a role in regulating 
cellular processes of oxygen and glucose consumption [38]. In 
particular, the metabolic flux is distributed through glycolysis [39-
42], Mitochondrial bioenergetics and oxidative phosphorylation 
are impaired during lipid metabolism [40, 43, 44]. In addition, 
RCC is one of the most immunoinvasive tumors [45, 46]. 
Emerging evidence suggests that activation of specific metabolic 
pathways has a role in regulating angiogenic and inflammatory 
characteristics [47, 48]. VHL mutations in mRCC increase the 
transcriptional activity of its target genes (e.g VEGF, glucose 
transporter 1, and erythropoietin), independent of oxygen levels, 
promoting angiogenesis and immunosuppression [38]. The 
complexity of cell interactions and the depletion of available 
nutrients may create a nutrient-competitive environment for T 
cells and accumulate waste products that may damage T cells 
[49]. Rcc-bm exhibits metabolic changes resulting in altered 
pathways related to energy metabolism and oxidative stress, as 
well as accumulation of immunosuppressive metabolites such 
as tryptophan (TRP) [38, 49]. The enhanced activity of a series 
of interconnected oncogenic signaling networks centered on the 
PI3K-AKT pathway represents a generalizable feature in different 
BM histologies [49]. CTLA4 inhibits CD28 signaling and PI3K/
Akt/mTORC1 signaling, resulting in decreased glycolysis and 
mitochondrial oxidative capacity [50]. Blocking the negative 
regulators of PD-1 and CTLA4, which impair CD28 signaling to 
inhibit T cell release, favors antitumor activity [38].
  By survival analysis, it was found that high TII score had better 
prognosis than low TII score. GSEA analysis showed that the 
genes in high TII score group were rich in immunosuppressive 
pathways, such as ERBB signaling pathway, MAKP signaling 
pathway, mTOR signaling pathway and TGFβ signaling pathway 

[51]. A large number of clinical studies have confirmed that Anti-
PD-1 and Anti-CTLA-4 antibodies can effectively inhibit the 
immune escape of cancer cells. Different from radiotherapy and 
chemotherapy drugs, the mechanism of immunotherapy is not 
to kill cancer cells directly, but to attack cancer cells indirectly 
by enhancing the specific anti-tumor cells of DC-CIK cells. 
Experimental study confirmed that the combination therapy can 
provide the synergistic anti-tumor effect of DC-CIK cells by 
suppressing proliferation, differentiation and early activation of 
RCC cells and regulating the immune stimulation and inhibiting 
the secretion of cytokines [52]. In RCC, about 1% of TIMCs 
express CTLA-4 [53] and the expression increased with the 
increase of tumor stage. In papillary RCC, up to 2.7% of TIMCs 
expressed CTLA-4 [54]. Polymorphisms in the CTLA-4 gene are 
associated with a higher risk of advanced ccRCC [55]. Allison and 
co-workers first demonstrated that administration of a CTLA-
4 blocking antibody in mice prevented tumor establishment and 
induced rejection of established tumors [28].

CTLA-4 clinical trials in RCC

Ipilimumab

Ipilimumab is a human IgG1 mAb that can inhibit the function 
of CTLA-4 and was first approved and recommended for the 
treatment of melanoma in 2011 [56]. It selectively blocks the 
interaction between the negative regulation of CTLA-4 on 
activated T cells and its ligands CD80/CD86 expressed on 
immune cells. In a phase 2 trial (NCT 00057889), the efficacy of 
ipilimumab monotherapy was evaluated in patients with metastatic 
RCC disease treated with ipilimumab high-dose (HD) (3 mg/kg 
every 3 weeks) versus low-dose (LD) (3 mg/kg once followed by 
1 mg/kg every 3 weeks) [57]. Of the 40 patients treated with HD 
ipilimumab, 5 achieved PR (12.5%), including patients who had 
previously progressed on IL-2 therapy [57]. Of the 21 patients with 
LD, only 1 had PR.no CRs in either arm. Grade 3 or higher TRAEs 
(Treatment-related Adverse Events), particularly autoimmune-
related enteritis and endocrine defects, were present in 33% of 
patients. The most common autoimmune events were enterocolitis 

Figure 1. Mechanisms of action of CTLA-4.
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(18%), hypophysitis (7%), and dermatitis (4%). No further studies 
have been conducted with ipilimumab monotherapy in RCC. 

Tremelimumab

Tremelimumab is another anti-CTLA-4 monoclonal antibody. In 
phase 1 trial (NCT00372853) tremelimumab was administered 
intravenously to patients with mRCC at doses of 6, 10, or 15 mg/kg 
every 12 weeks in combination with sunitinib at 50 mg daily for 4 
weeks, followed by 2 weeks or 37.5 mg daily [58]. Two of the five 
patients receiving tremelimumab 6 mg experienced unexpected 
rapid onset renal failure with sunitinib 50 mg, and one of the 
seven patients receiving tremelimumab 10 mg/kg plus sunitinib 
37.5 mg died suddenly. The expansion cohort was treated with 
tremelimumab 10 mg/kg plus sunitinib 37.5 mg. However, dose-
limiting toxicities were observed in three or seven patients. Of the 
nine patients evaluable, 43% achieved a partial response, but the 
regimen did not progress further due to toxicity.

Ipilimumab (anti-CTLA-4 antibody) and Nivolumab (anti-PD-1 
antibody)

In a Phase 3 Checkmate 214 study in advanced RCC (NCT 
02210117), 1096 patients were randomized to receive the 
combination of ipilimumab and nivolumab (n=550) and sunitinib 
(n=546). The co-primary endpoints of this study according to 
IMDC criteria were OS, PFS, and ORR (Objective Response 
Rate) in intermediate and low risk patients. ORR, PFS, and OS in 
the favorable risk group, and incidence of adverse events (AEs) 
in patients were secondary endpoints. In intermediate/low risk 
patients, combination therapy was associated with improved 
survival (HR: 0.63; 99.8% confidence interval: 0.44-0.89) and 
ORR (42 vs 27%), but no PFS reached the prespecified threshold 
(HR: 0.82; 99.1% confidence interval: 0.64-1.05). Of note, the 
combination of ipilimumab and nivolumab also improved the 
complete response rate (9 vs 1%). In patients at favorable risk, the 
combination did not result in a benefit in OS and ORR compared 
with sunitinib, however, complete response rates significantly 
favored the nivolumab and ipilimumab arms (11 vs 6%). There 
were 8 treatment-related deaths in the combination arm and 
4 in the sunitinib arm. Increase in lipase, fatigue, diarrhea, 

rash, nausea, and decrease in appetite, and asthenia were the 
most common high-level AEs in the combination arm, while 
hypertension, palmar-plantar redness, fatigue, diarrhea, lipase 
increased, asthenia, vomiting, and anemia were the most common 
high-level AEs in the sunitinib arm. Despite this, the quality of 
life assessment showed that the combination arm was significantly 
better than the sunitinib arm [59, 60]. There was a statistically 
signif icant improvement in overall response rate (ORR) 
compared with sunitinib standard of care in first-line treatment 
of intermediate and low-risk patients [61]. However, nivolumab 
in combination with ipilimumab is approved as a representative 
first-line treatment for patients with mRCC at intermediate or low 
risk of IMDC [62]. Studies described in the above paragraph are 
summarized in Table 1.

Discussion 

With the advent of ICI, we are entering a new era of systemic 
treatment for RCC. These agents are capable of restoring an 
immune response against tumors by inhibiting specific immune 
checkpoint receptors or ligands, such as programmed death 
receptor 1/programmed death receptor ligand 1 (PD-I/PD-L1) and 
cytotoxic T lymphocyte associated protein 4 (CTLA-4). More 
recently, the administration of immune checkpoint inhibitors 
has also proven to be an effective option for previously untreated 
patients [63]. In this case, two combination strategy have been 
tested: combinations between different immune checkpoint 
inhibitors and combinations between immune checkpoint 
inhibitors and targeting agents. Nivolumab monotherapy, 
ipilimumab plus nivolumab, and ICI plus VEGFR TKIs are now 
established as part of the standard of care for advanced RCC. 
The choice between these ICI-containing regimens remains 
unclear pending further long-term data. Interferon-monotherapy 
in combination with bevacizumab is no longer recommended in 
the first-line treatment of patients with Interferon-α. The immune 
checkpoint inhibitor nivolumab improves overall survival, 1-year 
mortality, adverse events, and health-related quality of life in 
participants with pretreated metastatic renal cell carcinoma 
and is an evidence-based option after failure of VEGF-targeted 
therapy. The combination of ipilimumab and nivolumab appears 
to be the first-line treatment of choice for patients with mRCC, 

Table 1. Immune checkpoint inhibitor-based adjuvant therapy trials in RCC.

Study N Description Primary Outcome to be Assessed

NCT 00057889 61
Two sequential cohorts received either 3 mg/
kg followed by 1 mg/kg or all doses at 3 mg/
kg every 3 weeks

A primary end point of response by Response 
Evaluation Criteria in Solid Tumors (RECIST) 
criteria

NCT00372853 28

Tremelimumab (6 mg/kg, 10 mg/kg, or 15 mg/
kg) intravenously once every 12 weeks and 
oral sunitinib (50 mg daily for 4 weeks then 
2 weeks off or 37.5 mg daily as a continuous 
dose)

The primary objective was to determine the 
maximum tolerated dose (MTD). Secondary 
objectives were to assess antitumor activity, 
safety, and pharmacokinetics

NCT 02210117 1096

Nivolumab 3 mg/kg plus ipilimumab 1 mg/
kg every 3 weeks for four doses followed by 
nivolumab 3 mg/kg every 2 weeks, or sunitinib 
50 mg/day for 4 weeks of each 6-week cycle

According to IMDC criteria, OS, PFS, and ORR 
in intermediate and low risk patients, ORR, PFS, 
and OS in the favorable risk group, and incidence 
of adverse events (AEs) in patients were 
secondary endpoints
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once available and patients are eligible for immunotherapy [64]. 
According to the International Metastatic Renal Cell Carcinoma 
Database Consortium (IMDC) [61], combination of nivolumab 
and ipilimumab improves survival and other clinical outcomes 
compared with sunitinib in patients at intermediate or low risk as 
the first-line treatment of mRCC patients with IMDC intermediate 
or low risk disease [62]. Immunotherapy has shown great promise 
in the treatment of many solid tumors, including RCC, non-small 
cell lung cancer, and melanoma, with sustained benefit, although 
the number of complete responses to monotherapy remains low 
in selected patient groups. Combination therapy appears to be the 
next logical approach that may improve durable survival, and there 
is increasing evidence to support this.

Conclusions

The first-line treatment modality for ccRCC has changed, 
particularly in intermediate/low risk patients, with the addition 
of nivolumab and ipilimumab in combination. However, more 
studies and better designed further studies are needed to explore 
the possibility and effectiveness of different drug combinations, 
while still focusing on their side effects, leading to better tumour 
outcomes. Future studies will likely identify biomarkers of 
subsequent immune response to better select candidates for 
neoadjuvant immunotherapy.
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